Kelas 12Kelas 11mathKalkulus
Hitunglah limit h -> 0 (f(x+h)-f(x))/h untuk f(x)=sin x
Pertanyaan
Hitunglah nilai dari limit h -> 0 (f(x+h)-f(x))/h untuk fungsi f(x)=sin x.
Solusi
Verified
cos x
Pembahasan
Untuk menghitung limit h -> 0 (f(x+h)-f(x))/h untuk f(x)=sin x, kita menggunakan definisi turunan. Langkah-langkahnya adalah sebagai berikut: 1. Ganti f(x) dengan sin x: (sin(x+h) - sin x) / h 2. Gunakan identitas trigonometri untuk sin(A+B): sin(x+h) = sin x cos h + cos x sin h 3. Substitusikan kembali ke dalam rumus limit: (sin x cos h + cos x sin h - sin x) / h 4. Kelompokkan suku-suku yang memiliki sin x: (sin x (cos h - 1) + cos x sin h) / h 5. Pisahkan menjadi dua limit: lim h->0 [sin x (cos h - 1) / h] + lim h->0 [cos x sin h / h] 6. Gunakan sifat-sifat limit trigonometri yang diketahui: - lim h->0 (cos h - 1) / h = 0 - lim h->0 sin h / h = 1 7. Substitusikan nilai limit tersebut: sin x * 0 + cos x * 1 8. Hasil akhirnya adalah: cos x Jadi, turunan dari sin x adalah cos x.
Topik: Limit Dan Turunan
Section: Definisi Turunan
Apakah jawaban ini membantu?