Kelas 11Kelas 10Kelas 12mathAljabar Linear
Diketahui A = (10 -8 8 -6) dan B = (4 6 2 4). Tentukan a.(A
Pertanyaan
Diketahui matriks A = [[10, -8], [8, -6]] dan B = [[4, 6], [2, 4]]. Tentukan: a. (A . B)^-1 b. B^-1 A^-1
Solusi
Verified
Hasil perhitungan invers matriks A.B dan perkalian invers matriks B dengan A adalah sama, yaitu [[3/2, -7/4], [-5/4, 3/2]].
Pembahasan
Untuk menentukan a.(A . B)^-1 dan b. B^-1 A^-1, kita perlu melakukan langkah-langkah berikut: 1. **Hitung A . B (Perkalian Matriks A dengan B):** A = [[10, -8], [8, -6]] B = [[4, 6], [2, 4]] A . B = [[(10*4 + -8*2), (10*6 + -8*4)], [(8*4 + -6*2), (8*6 + -6*4)]] A . B = [[(40 - 16), (60 - 32)], [(32 - 12), (48 - 24)]] A . B = [[24, 28], [20, 24]] 2. **Hitung Determinan (A . B):** det(A . B) = (24 * 24) - (28 * 20) det(A . B) = 576 - 560 det(A . B) = 16 3. **Hitung Invers (A . B)^-1:** (A . B)^-1 = 1/det(A . B) * [[adjugate dari (A . B)]] (A . B)^-1 = 1/16 * [[24, -28], [-20, 24]] (A . B)^-1 = [[24/16, -28/16], [-20/16, 24/16]] (A . B)^-1 = [[3/2, -7/4], [-5/4, 3/2]] 4. **Hitung Invers B (B^-1):** det(B) = (4 * 4) - (6 * 2) det(B) = 16 - 12 det(B) = 4 B^-1 = 1/det(B) * [[adjugate dari B]] B^-1 = 1/4 * [[4, -6], [-2, 4]] B^-1 = [[4/4, -6/4], [-2/4, 4/4]] B^-1 = [[1, -3/2], [-1/2, 1]] 5. **Hitung Invers A (A^-1):** det(A) = (10 * -6) - (-8 * 8) det(A) = -60 - (-64) det(A) = -60 + 64 det(A) = 4 A^-1 = 1/det(A) * [[adjugate dari A]] A^-1 = 1/4 * [[-6, 8], [-8, 10]] A^-1 = [[-6/4, 8/4], [-8/4, 10/4]] A^-1 = [[-3/2, 2], [-2, 5/2]] 6. **Hitung B^-1 A^-1:** B^-1 A^-1 = [[1, -3/2], [-1/2, 1]] * [[-3/2, 2], [-2, 5/2]] B^-1 A^-1 = [[(1*-3/2 + -3/2*-2), (1*2 + -3/2*5/2)], [(-1/2*-3/2 + 1*-2), (-1/2*2 + 1*5/2)]] B^-1 A^-1 = [[(-3/2 + 3), (2 - 15/4)], [(3/4 - 2), (-1 + 5/2)]] B^-1 A^-1 = [[3/2, -7/4], [-5/4, 3/2]] **Jawaban:** a. (A . B)^-1 = [[3/2, -7/4], [-5/4, 3/2]] b. B^-1 A^-1 = [[3/2, -7/4], [-5/4, 3/2]]
Topik: Matriks
Section: Operasi Matriks, Invers Matriks
Apakah jawaban ini membantu?