Command Palette

Search for a command to run...

Kelas 12Kelas 11Kelas 10mathAljabar

Diketahui f(x)=3x+2 dan g(x)=-2x+k . Jika (fog)(x)=(gof)(x)

Pertanyaan

Diketahui f(x) = 3x + 2 dan g(x) = -2x + k. Jika (fog)(x) = (gof)(x), maka tentukan (fof)^(-1)(x).

Solusi

Verified

(x - 8) / 9

Pembahasan

Diketahui: f(x) = 3x + 2 g(x) = -2x + k (fog)(x) = (gof)(x) (fog)(x) = f(g(x)) = f(-2x + k) = 3(-2x + k) + 2 = -6x + 3k + 2 (gof)(x) = g(f(x)) = g(3x + 2) = -2(3x + 2) + k = -6x - 4 + k Karena (fog)(x) = (gof)(x): -6x + 3k + 2 = -6x - 4 + k 3k + 2 = -4 + k 3k - k = -4 - 2 2k = -6 k = -3 Maka, g(x) = -2x - 3. Selanjutnya kita cari (fof)(x): (fof)(x) = f(f(x)) = f(3x + 2) = 3(3x + 2) + 2 = 9x + 6 + 2 = 9x + 8 Untuk mencari inversnya, misalkan y = 9x + 8 y - 8 = 9x x = (y - 8) / 9 Jadi, (fof)^(-1)(x) = (x - 8) / 9.

Buka akses pembahasan jawaban

Topik: Fungsi Invers, Fungsi Komposisi
Section: Sifat Fungsi Komposisi, Mencari Fungsi Invers

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...