Command Palette

Search for a command to run...

Kelas 11Kelas 12mathAljabar Linear

Diketahui matriks A=(4 3 2 2) dan B=(-2 -3 3 5). Jika

Pertanyaan

Diketahui matriks A=(4 3 2 2) dan B=(-2 -3 3 5). Jika matriks C=A^-1 B, matriks C^-1=...

Solusi

Verified

C^-1 = [-26 -21] [ 16 13 ]

Pembahasan

Untuk menyelesaikan soal ini, kita perlu mencari invers dari matriks C, di mana C = A^-1 B. Langkah-langkahnya adalah sebagai berikut: 1. Cari invers dari matriks A (A^-1). Matriks A = [4 3] [2 2] Determinan A = (4 * 2) - (3 * 2) = 8 - 6 = 2 A^-1 = 1/det(A) * [ d -b] [-c a] A^-1 = 1/2 * [ 2 -3] [-2 4] A^-1 = [ 1 -3/2] [-1 2] 2. Hitung matriks C = A^-1 B. C = [ 1 -3/2] * [-2 -3] [-1 2] [ 3 5] C = [ (1*-2 + -3/2*3) (1*-3 + -3/2*5) ] [ (-1*-2 + 2*3) (-1*-3 + 2*5) ] C = [ (-2 - 9/2) (-3 - 15/2) ] [ (2 + 6) (3 + 10) ] C = [ (-4/2 - 9/2) (-6/2 - 15/2) ] [ 8 13 ] C = [ -13/2 -21/2 ] [ 8 13 ] 3. Cari invers dari matriks C (C^-1). Determinan C = (-13/2 * 13) - (-21/2 * 8) Determinan C = -169/2 - (-168/2) Determinan C = -169/2 + 168/2 Determinan C = -1/2 C^-1 = 1/det(C) * [ d -b] [-c a] C^-1 = 1/(-1/2) * [ 13 21/2 ] [ -8 -13/2 ] C^-1 = -2 * [ 13 21/2 ] [ -8 -13/2 ] C^-1 = [ -26 -21 ] [ 16 13 ] Jadi, matriks C^-1 adalah [-26 -21] [ 16 13 ].
Topik: Matriks
Section: Operasi Matriks, Invers Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...