Command Palette

Search for a command to run...

Kelas 10Kelas 11mathTrigonometri

Diketahui segitiga ABC, dengan sudut A=120, a=14 cm, dan

Pertanyaan

Diketahui segitiga ABC, dengan sudut A = 120°, sisi a = 14 cm, dan sisi c = 10 cm. Hitunglah unsur-unsur yang lain (sudut B, sudut C, dan sisi b).

Solusi

Verified

Sudut C ≈ 38.23°, Sudut B ≈ 21.77°, Sisi b ≈ 6.00 cm.

Pembahasan

Diketahui segitiga ABC dengan sudut A = 120°, sisi a = 14 cm, dan sisi c = 10 cm. Kita perlu menghitung unsur-unsur yang lain, yaitu sudut B, sudut C, dan sisi b. 1. Mencari Sudut C menggunakan Aturan Sinus: Aturan Sinus menyatakan bahwa a/sin(A) = b/sin(B) = c/sin(C). Kita bisa menggunakan bagian a/sin(A) = c/sin(C). 14 / sin(120°) = 10 / sin(C) Kita tahu bahwa sin(120°) = sin(180° - 60°) = sin(60°) = √3/2. 14 / (√3/2) = 10 / sin(C) (14 * 2) / √3 = 10 / sin(C) 28 / √3 = 10 / sin(C) Sekarang, selesaikan untuk sin(C): sin(C) = (10 * √3) / 28 sin(C) = (5√3) / 14 Untuk mencari sudut C, kita gunakan fungsi arcsin: C = arcsin((5√3) / 14) Menggunakan kalkulator, C ≈ arcsin(0.6186) ≈ 38.23°. 2. Mencari Sudut B: Jumlah sudut dalam segitiga adalah 180°. Jadi, A + B + C = 180°. 120° + B + 38.23° ≈ 180° 158.23° + B ≈ 180° B ≈ 180° - 158.23° B ≈ 21.77°. 3. Mencari Sisi b menggunakan Aturan Sinus: Kita bisa gunakan b/sin(B) = a/sin(A). b / sin(21.77°) ≈ 14 / sin(120°) b / sin(21.77°) ≈ 14 / (√3/2) b / sin(21.77°) ≈ 28 / √3 Sekarang, selesaikan untuk b: b ≈ sin(21.77°) * (28 / √3) b ≈ 0.3707 * (28 / 1.732) b ≈ 0.3707 * 16.166 b ≈ 5.995 cm Jadi, unsur-unsur yang lain adalah: Sudut C ≈ 38.23° Sudut B ≈ 21.77° Sisi b ≈ 6.00 cm (dibulatkan)

Buka akses pembahasan jawaban

Topik: Aturan Sinus Dan Cosinus
Section: Aplikasi Aturan Sinus

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...