Kelas 10mathTrigonometri
Jika cos x=akar(5)/5 maka cot (pi/2-x)=...
Pertanyaan
Jika cos x=akar(5)/5 maka cot (pi/2-x)=...
Solusi
Verified
cot (pi/2-x) = tan x = +/- 2
Pembahasan
Untuk mencari nilai \(cot(\frac{\pi}{2} - x)\) ketika \(cos x = \frac{\sqrt{5}}{5}\), kita dapat menggunakan identitas trigonometri \(cot(\frac{\pi}{2} - x) = tan x\). Pertama, kita perlu mencari nilai \(sin x\). Kita tahu bahwa \(sin^2 x + cos^2 x = 1\). Maka, \(sin^2 x = 1 - cos^2 x\) \(sin^2 x = 1 - (\frac{\sqrt{5}}{5})^2\) \(sin^2 x = 1 - \frac{5}{25}\) \(sin^2 x = 1 - \frac{1}{5}\) \(sin^2 x = \frac{4}{5}\) \(sin x = \pm \frac{2}{\sqrt{5}} = \pm \frac{2\sqrt{5}}{5}\). Karena \(cot(\frac{\pi}{2} - x) = tan x = \frac{sin x}{cos x}\), maka: \(tan x = \frac{\pm \frac{2\sqrt{5}}{5}}{\frac{\sqrt{5}}{5}}\) \(tan x = \pm 2\). Jadi, \(cot(\frac{\pi}{2} - x) = \pm 2\).
Topik: Identitas Trigonometri
Section: Identitas Sudut Berelasi
Apakah jawaban ini membantu?