Command Palette

Search for a command to run...

Kelas 12Kelas 11mathKalkulus

Tentukan hasil pengintegralan integral

Pertanyaan

Tentukan hasil pengintegralan integral (x^2(x+1)^2)/(akar(x)) dx!

Solusi

Verified

Hasil pengintegralan adalah $\frac{2}{9}x^{9/2} + \frac{4}{7}x^{7/2} + \frac{2}{5}x^{5/2} + C$

Pembahasan

Untuk menentukan hasil pengintegralan dari $\frac{x^2(x+1)^2}{\sqrt{x}} dx$, kita perlu menyederhanakan ekspresi terlebih dahulu: $\frac{x^2(x+1)^2}{\sqrt{x}} = \frac{x^2(x^2+2x+1)}{x^{1/2}}$ $= \frac{x^4+2x^3+x^2}{x^{1/2}}$ $= x^{4-1/2} + 2x^{3-1/2} + x^{2-1/2}$ $= x^{7/2} + 2x^{5/2} + x^{3/2}$ Sekarang kita dapat mengintegralkan setiap suku: $\int x^{7/2} dx = \frac{x^{7/2+1}}{7/2+1} + C_1 = \frac{x^{9/2}}{9/2} + C_1 = \frac{2}{9}x^{9/2} + C_1$ $\int 2x^{5/2} dx = 2\frac{x^{5/2+1}}{5/2+1} + C_2 = 2\frac{x^{7/2}}{7/2} + C_2 = 2 \times \frac{2}{7}x^{7/2} + C_2 = \frac{4}{7}x^{7/2} + C_2$ $\int x^{3/2} dx = \frac{x^{3/2+1}}{3/2+1} + C_3 = \frac{x^{5/2}}{5/2} + C_3 = \frac{2}{5}x^{5/2} + C_3$ Jadi, hasil pengintegralan keseluruhannya adalah: $\int \frac{x^2(x+1)^2}{\sqrt{x}} dx = \frac{2}{9}x^{9/2} + \frac{4}{7}x^{7/2} + \frac{2}{5}x^{5/2} + C$ Di mana C adalah konstanta integrasi.

Buka akses pembahasan jawaban

Topik: Integral
Section: Integral Tak Tentu

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...