Command Palette

Search for a command to run...

Kelas 10mathMatematika

Jika K = {b,u,n,g,a}, maka banyaknya himpunan bagian dari K

Pertanyaan

Jika K = {b, u, n, g, a}, maka banyaknya himpunan bagian dari K yang mempunyai 4 anggota ada berapa?

Solusi

Verified

5

Pembahasan

Untuk mencari banyaknya himpunan bagian dari K yang mempunyai 4 anggota, kita perlu menggunakan konsep kombinasi. Himpunan K memiliki 5 anggota, yaitu {b, u, n, g, a}. Kita ingin mencari berapa banyak cara memilih 4 anggota dari 5 anggota tersebut. Rumus kombinasi adalah C(n, k) = n! / (k!(n-k)!), di mana n adalah jumlah total anggota dan k adalah jumlah anggota yang ingin dipilih. Dalam kasus ini, n = 5 (jumlah anggota K) dan k = 4 (jumlah anggota himpunan bagian yang diinginkan). C(5, 4) = 5! / (4!(5-4)!) = 5! / (4!1!) = (5 * 4 * 3 * 2 * 1) / ((4 * 3 * 2 * 1) * 1) = 5. Jadi, banyaknya himpunan bagian dari K yang mempunyai 4 anggota adalah 5.
Topik: Kombinasi, Teori Himpunan
Section: Kombinasi

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...