Command Palette

Search for a command to run...

Kelas 11Kelas 12mathKalkulus

Proyek pembangunan suatu gedung dapat diselesaikan dalam

Pertanyaan

Proyek pembangunan suatu gedung dapat diselesaikan dalam waktu x hari. Proyek tersebut menghabiskan biaya per hari sebesar (3x-180+5.000/x) ratus ribu rupiah. Berapa biaya minimum proyek pembangunan gedung tersebut?

Solusi

Verified

Rp 230.000.000

Pembahasan

Untuk mencari biaya minimum proyek pembangunan gedung, kita perlu menurunkan fungsi biaya terhadap waktu (x) dan mencari nilai x yang membuat turunan pertama sama dengan nol. Biaya per hari adalah B(x) = (3x - 180 + 5.000/x) ratus ribu rupiah. Total biaya proyek T(x) adalah biaya per hari dikalikan dengan jumlah hari (x): T(x) = x * B(x) T(x) = x * (3x - 180 + 5.000/x) T(x) = 3x^2 - 180x + 5.000 Untuk mencari biaya minimum, kita cari turunan pertama T(x) terhadap x dan samakan dengan nol: T'(x) = d/dx (3x^2 - 180x + 5.000) T'(x) = 6x - 180 Samakan T'(x) dengan nol: 6x - 180 = 0 6x = 180 x = 180 / 6 x = 30 Jadi, waktu penyelesaian proyek yang meminimalkan biaya adalah 30 hari. Sekarang kita hitung biaya minimum dengan mensubstitusikan x = 30 ke dalam fungsi T(x): T(30) = 3*(30)^2 - 180*(30) + 5.000 T(30) = 3*(900) - 5.400 + 5.000 T(30) = 2.700 - 5.400 + 5.000 T(30) = 2.300 Biaya minimum proyek pembangunan gedung tersebut adalah 2.300 ratus ribu rupiah, atau Rp 230.000.000.

Buka akses pembahasan jawaban

Topik: Aplikasi Turunan, Biaya Minimum
Section: Optimasi Biaya

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...