Command Palette

Search for a command to run...

Kelas 10Kelas 9mathAljabar

Tentukan fungsi kuadrat yang grafiknya memiliki titik

Pertanyaan

Tentukan fungsi kuadrat yang grafiknya memiliki titik potong sumbu-x pada koordinat (-2, 0) dan (3, 0) serta memotong sumbu-y pada koordinat (0, 3).

Solusi

Verified

f(x) = -1/2 x² + 1/2 x + 3

Pembahasan

Untuk menentukan fungsi kuadrat yang grafiknya memiliki titik potong sumbu-x pada (-2, 0) dan (3, 0) serta memotong sumbu-y pada (0, 3), kita bisa menggunakan bentuk pemfaktoran fungsi kuadrat. Bentuk umum fungsi kuadrat yang memotong sumbu-x di x1 dan x2 adalah: f(x) = a(x - x1)(x - x2) Dari titik potong sumbu-x (-2, 0) dan (3, 0), kita tahu bahwa x1 = -2 dan x2 = 3. Jadi, f(x) = a(x - (-2))(x - 3) f(x) = a(x + 2)(x - 3) Selanjutnya, kita gunakan informasi bahwa grafik memotong sumbu-y di (0, 3). Ini berarti ketika x = 0, f(x) = 3. Substitusikan nilai ini ke dalam persamaan fungsi kuadrat: 3 = a(0 + 2)(0 - 3) 3 = a(2)(-3) 3 = -6a Untuk mencari nilai a, bagi kedua sisi dengan -6: a = 3 / -6 a = -1/2 Sekarang substitusikan nilai a kembali ke dalam persamaan fungsi kuadrat: f(x) = (-1/2)(x + 2)(x - 3) Kita bisa menjabarkan persamaan ini untuk mendapatkan bentuk standar f(x) = ax² + bx + c: f(x) = (-1/2)(x² - 3x + 2x - 6) f(x) = (-1/2)(x² - x - 6) f(x) = (-1/2)x² + (1/2)x + 3 Jadi, fungsi kuadratnya adalah f(x) = -1/2 x² + 1/2 x + 3.

Buka akses pembahasan jawaban

Topik: Fungsi Kuadrat
Section: Aplikasi Fungsi Kuadrat

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...