Command Palette

Search for a command to run...

Kelas 9Kelas 11Kelas 10mathAljabar

Tentukan hasil dari: a. (3(a^2b^3)^(1/5))^(-3) b.

Pertanyaan

Tentukan hasil dari operasi bentuk aljabar berikut: a. (3(a^2b^3)^(1/5))^(-3) b. (a^(2/3))^4 x (a^(-1/2))^(1/3) x (akar(a))^5 c. (2 + akar(5))^2 d. (5akar(3) - 4akar(2))^2

Solusi

Verified

a. 1 / (27a^(6/5)b^(9/5)), b. a^5, c. 9 + 4akar(5), d. 107 - 40akar(6)

Pembahasan

a. (3(a^2b^3)^(1/5))^(-3) = 3^(-3) * (a^2b^3)^(-3/5) = (1/27) * a^(-6/5) * b^(-9/5) = 1 / (27 * a^(6/5) * b^(9/5)) b. (a^(2/3))^4 * (a^(-1/2))^(1/3) * (a^(1/2))^5 = a^(8/3) * a^(-1/6) * a^(5/2) = a^(8/3 - 1/6 + 5/2) = a^((16 - 1 + 15)/6) = a^(30/6) = a^5 c. (2 + akar(5))^2 = 2^2 + 2 * 2 * akar(5) + (akar(5))^2 = 4 + 4akar(5) + 5 = 9 + 4akar(5) d. (5akar(3) - 4akar(2))^2 = (5akar(3))^2 - 2 * 5akar(3) * 4akar(2) + (4akar(2))^2 = (25 * 3) - 40akar(6) + (16 * 2) = 75 - 40akar(6) + 32 = 107 - 40akar(6)
Topik: Bentuk Akar, Bilangan Berpangkat
Section: Operasi Bentuk Akar, Sifat Sifat Bilangan Berpangkat

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...