Kelas 11Kelas 12mathAljabar
Tunjukkan bahwa: (-1 -1 -1 0 1 0 0 0 1)^2=(0 1 0 -1 -1 -1 0
Pertanyaan
Tunjukkan bahwa: (-1 -1 -1 0 1 0 0 0 1)^2=(0 1 0 -1 -1 -1 0 0 1)^3=(0 1 0 0 0 1 -1 -1 -1)^4=I
Solusi
Verified
Terbukti bahwa hasil pemangkatan matriks-matriks tersebut menghasilkan matriks identitas (I) setelah dilakukan perhitungan perkalian matriks.
Pembahasan
Soal ini meminta kita untuk menunjukkan bahwa hasil pemangkatan matriks tertentu menghasilkan matriks identitas (I). Diberikan tiga ekspresi matriks: M = (-1 -1 -1 0 1 0 0 0 1) N = (0 1 0 -1 -1 -1 0 0 1) O = (0 1 0 0 0 1 -1 -1 -1) Kita perlu menunjukkan bahwa M^2 = I, N^3 = I, dan O^4 = I. Mari kita hitung M^2: M^2 = M * M Matriks M dapat ditulis dalam bentuk: M = [[-1, -1, -1], [0, 1, 0], [0, 0, 1]] M^2 = [[-1, -1, -1], [0, 1, 0], [0, 0, 1]] * [[-1, -1, -1], [0, 1, 0], [0, 0, 1]] Untuk menghitung M^2, kita lakukan perkalian matriks: Elemen (1,1) = (-1*-1) + (-1*0) + (-1*0) = 1 + 0 + 0 = 1 Elemen (1,2) = (-1*-1) + (-1*1) + (-1*0) = 1 - 1 + 0 = 0 Elemen (1,3) = (-1*-1) + (-1*0) + (-1*1) = 1 + 0 - 1 = 0 Elemen (2,1) = (0*-1) + (1*0) + (0*0) = 0 + 0 + 0 = 0 Elemen (2,2) = (0*-1) + (1*1) + (0*0) = 0 + 1 + 0 = 1 Elemen (2,3) = (0*-1) + (1*0) + (0*1) = 0 + 0 + 0 = 0 Elemen (3,1) = (0*-1) + (0*0) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*-1) + (0*1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*-1) + (0*0) + (1*1) = 0 + 0 + 1 = 1 Jadi, M^2 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] = I. Pernyataan pertama terbukti. Selanjutnya, mari kita hitung N^3: N = [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] N^2 = N * N N^2 = [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] * [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] Elemen (1,1) = (0*0) + (1*-1) + (0*0) = 0 - 1 + 0 = -1 Elemen (1,2) = (0*1) + (1*-1) + (0*0) = 0 - 1 + 0 = -1 Elemen (1,3) = (0*0) + (1*-1) + (0*1) = 0 - 1 + 0 = -1 Elemen (2,1) = (-1*0) + (-1*-1) + (-1*0) = 0 + 1 + 0 = 1 Elemen (2,2) = (-1*1) + (-1*-1) + (-1*0) = -1 + 1 + 0 = 0 Elemen (2,3) = (-1*0) + (-1*-1) + (-1*1) = 0 + 1 - 1 = 0 Elemen (3,1) = (0*0) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*1) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*0) + (0*-1) + (1*1) = 0 + 0 + 1 = 1 Jadi, N^2 = [[-1, -1, -1], [1, 0, 0], [0, 0, 1]]. Sekarang hitung N^3 = N^2 * N: N^3 = [[-1, -1, -1], [1, 0, 0], [0, 0, 1]] * [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] Elemen (1,1) = (-1*0) + (-1*-1) + (-1*0) = 0 + 1 + 0 = 1 Elemen (1,2) = (-1*1) + (-1*-1) + (-1*0) = -1 + 1 + 0 = 0 Elemen (1,3) = (-1*0) + (-1*-1) + (-1*1) = 0 + 1 - 1 = 0 Elemen (2,1) = (1*0) + (0*-1) + (0*0) = 0 + 0 + 0 = 0 Elemen (2,2) = (1*1) + (0*-1) + (0*0) = 1 + 0 + 0 = 1 Elemen (2,3) = (1*0) + (0*-1) + (0*1) = 0 + 0 + 0 = 0 Elemen (3,1) = (0*0) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*1) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*0) + (0*-1) + (1*1) = 0 + 0 + 1 = 1 Jadi, N^3 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] = I. Pernyataan kedua terbukti. Terakhir, mari kita hitung O^4: O = [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] O^2 = O * O O^2 = [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] * [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] Elemen (1,1) = (0*0) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (1,2) = (0*1) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (1,3) = (0*0) + (1*1) + (0*-1) = 0 + 1 + 0 = 1 Elemen (2,1) = (0*0) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (2,2) = (0*1) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (2,3) = (0*0) + (0*1) + (1*-1) = 0 + 0 - 1 = -1 Elemen (3,1) = (-1*0) + (-1*0) + (-1*-1) = 0 + 0 + 1 = 1 Elemen (3,2) = (-1*1) + (-1*0) + (-1*-1) = -1 + 0 + 1 = 0 Elemen (3,3) = (-1*0) + (-1*1) + (-1*-1) = 0 - 1 + 1 = 0 Jadi, O^2 = [[0, 0, 1], [-1, -1, -1], [1, 0, 0]]. Sekarang hitung O^3 = O^2 * O: O^3 = [[0, 0, 1], [-1, -1, -1], [1, 0, 0]] * [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] Elemen (1,1) = (0*0) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (1,2) = (0*1) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (1,3) = (0*0) + (0*1) + (1*-1) = 0 + 0 - 1 = -1 Elemen (2,1) = (-1*0) + (-1*0) + (-1*-1) = 0 + 0 + 1 = 1 Elemen (2,2) = (-1*1) + (-1*0) + (-1*-1) = -1 + 0 + 1 = 0 Elemen (2,3) = (-1*0) + (-1*1) + (-1*-1) = 0 - 1 + 1 = 0 Elemen (3,1) = (1*0) + (0*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,2) = (1*1) + (0*0) + (0*-1) = 1 + 0 + 0 = 1 Elemen (3,3) = (1*0) + (0*1) + (0*-1) = 0 + 0 + 0 = 0 Jadi, O^3 = [[-1, -1, -1], [1, 0, 0], [0, 1, 0]]. Terakhir, hitung O^4 = O^3 * O: O^4 = [[-1, -1, -1], [1, 0, 0], [0, 1, 0]] * [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] Elemen (1,1) = (-1*0) + (-1*0) + (-1*-1) = 0 + 0 + 1 = 1 Elemen (1,2) = (-1*1) + (-1*0) + (-1*-1) = -1 + 0 + 1 = 0 Elemen (1,3) = (-1*0) + (-1*1) + (-1*-1) = 0 - 1 + 1 = 0 Elemen (2,1) = (1*0) + (0*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (2,2) = (1*1) + (0*0) + (0*-1) = 1 + 0 + 0 = 1 Elemen (2,3) = (1*0) + (0*1) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,1) = (0*0) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*1) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*0) + (1*1) + (0*-1) = 0 + 1 + 0 = 1 Jadi, O^4 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] = I. Pernyataan ketiga terbukti. Dengan demikian, terbukti bahwa M^2 = I, N^3 = I, dan O^4 = I.
Topik: Matriks
Section: Operasi Matriks, Invers Matriks
Apakah jawaban ini membantu?