Command Palette

Search for a command to run...

Kelas 11Kelas 12mathAljabar

Tunjukkan bahwa: (-1 -1 -1 0 1 0 0 0 1)^2=(0 1 0 -1 -1 -1 0

Pertanyaan

Tunjukkan bahwa: (-1 -1 -1 0 1 0 0 0 1)^2=(0 1 0 -1 -1 -1 0 0 1)^3=(0 1 0 0 0 1 -1 -1 -1)^4=I

Solusi

Verified

Terbukti bahwa hasil pemangkatan matriks-matriks tersebut menghasilkan matriks identitas (I) setelah dilakukan perhitungan perkalian matriks.

Pembahasan

Soal ini meminta kita untuk menunjukkan bahwa hasil pemangkatan matriks tertentu menghasilkan matriks identitas (I). Diberikan tiga ekspresi matriks: M = (-1 -1 -1 0 1 0 0 0 1) N = (0 1 0 -1 -1 -1 0 0 1) O = (0 1 0 0 0 1 -1 -1 -1) Kita perlu menunjukkan bahwa M^2 = I, N^3 = I, dan O^4 = I. Mari kita hitung M^2: M^2 = M * M Matriks M dapat ditulis dalam bentuk: M = [[-1, -1, -1], [0, 1, 0], [0, 0, 1]] M^2 = [[-1, -1, -1], [0, 1, 0], [0, 0, 1]] * [[-1, -1, -1], [0, 1, 0], [0, 0, 1]] Untuk menghitung M^2, kita lakukan perkalian matriks: Elemen (1,1) = (-1*-1) + (-1*0) + (-1*0) = 1 + 0 + 0 = 1 Elemen (1,2) = (-1*-1) + (-1*1) + (-1*0) = 1 - 1 + 0 = 0 Elemen (1,3) = (-1*-1) + (-1*0) + (-1*1) = 1 + 0 - 1 = 0 Elemen (2,1) = (0*-1) + (1*0) + (0*0) = 0 + 0 + 0 = 0 Elemen (2,2) = (0*-1) + (1*1) + (0*0) = 0 + 1 + 0 = 1 Elemen (2,3) = (0*-1) + (1*0) + (0*1) = 0 + 0 + 0 = 0 Elemen (3,1) = (0*-1) + (0*0) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*-1) + (0*1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*-1) + (0*0) + (1*1) = 0 + 0 + 1 = 1 Jadi, M^2 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] = I. Pernyataan pertama terbukti. Selanjutnya, mari kita hitung N^3: N = [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] N^2 = N * N N^2 = [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] * [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] Elemen (1,1) = (0*0) + (1*-1) + (0*0) = 0 - 1 + 0 = -1 Elemen (1,2) = (0*1) + (1*-1) + (0*0) = 0 - 1 + 0 = -1 Elemen (1,3) = (0*0) + (1*-1) + (0*1) = 0 - 1 + 0 = -1 Elemen (2,1) = (-1*0) + (-1*-1) + (-1*0) = 0 + 1 + 0 = 1 Elemen (2,2) = (-1*1) + (-1*-1) + (-1*0) = -1 + 1 + 0 = 0 Elemen (2,3) = (-1*0) + (-1*-1) + (-1*1) = 0 + 1 - 1 = 0 Elemen (3,1) = (0*0) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*1) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*0) + (0*-1) + (1*1) = 0 + 0 + 1 = 1 Jadi, N^2 = [[-1, -1, -1], [1, 0, 0], [0, 0, 1]]. Sekarang hitung N^3 = N^2 * N: N^3 = [[-1, -1, -1], [1, 0, 0], [0, 0, 1]] * [[0, 1, 0], [-1, -1, -1], [0, 0, 1]] Elemen (1,1) = (-1*0) + (-1*-1) + (-1*0) = 0 + 1 + 0 = 1 Elemen (1,2) = (-1*1) + (-1*-1) + (-1*0) = -1 + 1 + 0 = 0 Elemen (1,3) = (-1*0) + (-1*-1) + (-1*1) = 0 + 1 - 1 = 0 Elemen (2,1) = (1*0) + (0*-1) + (0*0) = 0 + 0 + 0 = 0 Elemen (2,2) = (1*1) + (0*-1) + (0*0) = 1 + 0 + 0 = 1 Elemen (2,3) = (1*0) + (0*-1) + (0*1) = 0 + 0 + 0 = 0 Elemen (3,1) = (0*0) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*1) + (0*-1) + (1*0) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*0) + (0*-1) + (1*1) = 0 + 0 + 1 = 1 Jadi, N^3 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] = I. Pernyataan kedua terbukti. Terakhir, mari kita hitung O^4: O = [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] O^2 = O * O O^2 = [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] * [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] Elemen (1,1) = (0*0) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (1,2) = (0*1) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (1,3) = (0*0) + (1*1) + (0*-1) = 0 + 1 + 0 = 1 Elemen (2,1) = (0*0) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (2,2) = (0*1) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (2,3) = (0*0) + (0*1) + (1*-1) = 0 + 0 - 1 = -1 Elemen (3,1) = (-1*0) + (-1*0) + (-1*-1) = 0 + 0 + 1 = 1 Elemen (3,2) = (-1*1) + (-1*0) + (-1*-1) = -1 + 0 + 1 = 0 Elemen (3,3) = (-1*0) + (-1*1) + (-1*-1) = 0 - 1 + 1 = 0 Jadi, O^2 = [[0, 0, 1], [-1, -1, -1], [1, 0, 0]]. Sekarang hitung O^3 = O^2 * O: O^3 = [[0, 0, 1], [-1, -1, -1], [1, 0, 0]] * [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] Elemen (1,1) = (0*0) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (1,2) = (0*1) + (0*0) + (1*-1) = 0 + 0 - 1 = -1 Elemen (1,3) = (0*0) + (0*1) + (1*-1) = 0 + 0 - 1 = -1 Elemen (2,1) = (-1*0) + (-1*0) + (-1*-1) = 0 + 0 + 1 = 1 Elemen (2,2) = (-1*1) + (-1*0) + (-1*-1) = -1 + 0 + 1 = 0 Elemen (2,3) = (-1*0) + (-1*1) + (-1*-1) = 0 - 1 + 1 = 0 Elemen (3,1) = (1*0) + (0*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,2) = (1*1) + (0*0) + (0*-1) = 1 + 0 + 0 = 1 Elemen (3,3) = (1*0) + (0*1) + (0*-1) = 0 + 0 + 0 = 0 Jadi, O^3 = [[-1, -1, -1], [1, 0, 0], [0, 1, 0]]. Terakhir, hitung O^4 = O^3 * O: O^4 = [[-1, -1, -1], [1, 0, 0], [0, 1, 0]] * [[0, 1, 0], [0, 0, 1], [-1, -1, -1]] Elemen (1,1) = (-1*0) + (-1*0) + (-1*-1) = 0 + 0 + 1 = 1 Elemen (1,2) = (-1*1) + (-1*0) + (-1*-1) = -1 + 0 + 1 = 0 Elemen (1,3) = (-1*0) + (-1*1) + (-1*-1) = 0 - 1 + 1 = 0 Elemen (2,1) = (1*0) + (0*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (2,2) = (1*1) + (0*0) + (0*-1) = 1 + 0 + 0 = 1 Elemen (2,3) = (1*0) + (0*1) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,1) = (0*0) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,2) = (0*1) + (1*0) + (0*-1) = 0 + 0 + 0 = 0 Elemen (3,3) = (0*0) + (1*1) + (0*-1) = 0 + 1 + 0 = 1 Jadi, O^4 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] = I. Pernyataan ketiga terbukti. Dengan demikian, terbukti bahwa M^2 = I, N^3 = I, dan O^4 = I.
Topik: Matriks
Section: Operasi Matriks, Invers Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...