Kelas 10Kelas 11mathAljabar
((2 x y^(-1) z^(3))^(2))/((4 x^(-1) y^(2) z)^(-1))=
Pertanyaan
Sederhanakan ekspresi berikut: ((2 x y^(-1) z^(3))^(2))/((4 x^(-1) y^(2) z)^(-1))
Solusi
Verified
16xz^7
Pembahasan
Untuk menyederhanakan ekspresi ((2 x y^(-1) z^(3))^(2))/((4 x^(-1) y^(2) z)^(-1)), kita akan mengikuti aturan eksponen: Langkah 1: Terapkan eksponen pada bagian pembilang: (2 x y^(-1) z^(3))^(2) = 2^(2) * x^(2) * (y^(-1))^(2) * (z^(3))^(2) = 4 * x^(2) * y^(-2) * z^(6) = (4 x^(2) z^(6)) / y^(2) Langkah 2: Terapkan eksponen pada bagian penyebut: (4 x^(-1) y^(2) z)^(-1) = 4^(-1) * (x^(-1))^(-1) * (y^(2))^(-1) * z^(-1) = (1/4) * x^(1) * y^(-2) * z^(-1) = x / (4 y^(2) z) Langkah 3: Bagi pembilang dengan penyebut: ((4 x^(2) z^(6)) / y^(2)) / (x / (4 y^(2) z)) Untuk membagi pecahan, kita kalikan pecahan pertama dengan kebalikan dari pecahan kedua: = (4 x^(2) z^(6)) / y^(2) * (4 y^(2) z) / x Langkah 4: Kalikan pembilang dengan pembilang dan penyebut dengan penyebut: = (4 x^(2) z^(6) * 4 y^(2) z) / (y^(2) * x) Langkah 5: Gabungkan suku-suku yang serupa dan sederhanakan: = (16 x^(2) y^(2) z^(7)) / (x y^(2)) Sekarang, sederhanakan dengan membagi suku yang sama: x^(2) / x = x^(2-1) = x y^(2) / y^(2) = y^(2-2) = y^(0) = 1 Hasil akhirnya adalah: 16 * x * 1 * z^(7) = 16 x z^(7) Jadi, hasil penyederhanaan ekspresi tersebut adalah 16xz^7.
Topik: Bentuk Pangkat Dan Akar
Section: Penyederhanaan Bentuk Pangkat
Apakah jawaban ini membantu?