Command Palette

Search for a command to run...

Kelas 11Kelas 12mathAljabar

Diketahui A=[1 1 -2 6 9 -10 -3 -2 7], tentukan invers

Pertanyaan

Diketahui A=[1 1 -2 6 9 -10 -3 -2 7], tentukan invers matriksnya (A^(-1))

Solusi

Verified

Invers matriks A adalah [[43, -3, -8], [-12, 1, -2], [-15, -1, 3]].

Pembahasan

Untuk menentukan invers matriks A, kita perlu menggunakan rumus: A⁻¹ = (1 / det(A)) * adj(A) Langkah-langkahnya adalah sebagai berikut: 1. **Hitung Determinan (det(A))**: Matriks A = [1 1 -2] [6 9 -10] [-3 -2 7] det(A) = 1 * ( (9*7) - (-10*-2) ) - 1 * ( (6*7) - (-10*-3) ) + (-2) * ( (6*-2) - (9*-3) ) det(A) = 1 * ( 63 - 20 ) - 1 * ( 42 - 30 ) - 2 * ( -12 - (-27) ) det(A) = 1 * ( 43 ) - 1 * ( 12 ) - 2 * ( -12 + 27 ) det(A) = 43 - 12 - 2 * ( 15 ) det(A) = 43 - 12 - 30 det(A) = 31 - 30 det(A) = 1 Karena determinan A tidak sama dengan nol (det(A) = 1), maka invers matriks A ada. 2. **Hitung Matriks Adjoin (adj(A))**: Matriks adjoin adalah transpose dari matriks kofaktor. Pertama, kita cari matriks kofaktor (C). C₁₁ = +( (9*7) - (-10*-2) ) = 63 - 20 = 43 C₁₂ = -( (6*7) - (-10*-3) ) = -( 42 - 30 ) = -12 C₁₃ = +( (6*-2) - (9*-3) ) = -( -12 + 27 ) = -15 C₂₁ = -( (1*7) - (-2*-2) ) = -( 7 - 4 ) = -3 C₂₂ = +( (1*7) - (-2*-3) ) = +( 7 - 6 ) = 1 C₂₃ = -( (1*-2) - (1*-3) ) = -( -2 + 3 ) = -1 C₃₁ = +( (1*-10) - (-2*9) ) = -( -10 + 18 ) = -8 C₃₂ = -( (1*-10) - (-2*6) ) = -( -10 + 12 ) = -2 C₃₃ = +( (1*9) - (1*6) ) = +( 9 - 6 ) = 3 Matriks Kofaktor (C) = [ 43 -12 -15 ] [ -3 1 -1 ] [ -8 -2 3 ] Matriks Adjoin (adj(A)) = Cᵀ = [ 43 -3 -8 ] [ -12 1 -2 ] [ -15 -1 3 ] 3. **Hitung Invers Matriks (A⁻¹)**: A⁻¹ = (1 / det(A)) * adj(A) A⁻¹ = (1 / 1) * adj(A) A⁻¹ = [ 43 -3 -8 ] [ -12 1 -2 ] [ -15 -1 3 ] Jadi, invers matriks A adalah: [ 43 -3 -8 ] [ -12 1 -2 ] [ -15 -1 3 ]
Topik: Matriks
Section: Invers Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...