Kelas 12Kelas 11mathAljabar Linear
Diketahui A=(3 -5 4 -7) dan B=(-9 5 -7 4). Tentukan a.
Pertanyaan
Diketahui A=(3 -5 4 -7) dan B=(-9 5 -7 4). Tentukan a. (AB)^-1 b. (BA)^-1
Solusi
Verified
a. (AB)^-1 = [-69/38 25/19; -71/38 26/19]. b. (BA)^-1 = [-12/19 5/19; -13/38 7/38].
Pembahasan
Diberikan matriks A = (3 -5 4 -7) dan B = (-9 5 -7 4). Kita perlu menentukan (AB)^-1 dan (BA)^-1. Langkah 1: Hitung perkalian matriks AB. AB = [ 3 -5 ] [ -9 5 ] [ 4 -7 ] [ 5 -7 ] Elemen AB(1,1) = (3)(-9) + (-5)(5) = -27 - 25 = -52 Elemen AB(1,2) = (3)(5) + (-5)(-7) = 15 + 35 = 50 Elemen AB(2,1) = (4)(-9) + (-7)(5) = -36 - 35 = -71 Elemen AB(2,2) = (4)(5) + (-7)(-7) = 20 + 49 = 69 Jadi, AB = [ -52 50 ] [ -71 69 ] Langkah 2: Hitung invers dari AB, yaitu (AB)^-1. Untuk matriks 2x2 [ a b ; c d ], inversnya adalah (1/det) * [ d -b ; -c a ], di mana det = ad - bc. determinant(AB) = (-52)(69) - (50)(-71) = -3588 - (-3550) = -3588 + 3550 = -38 (AB)^-1 = (1 / -38) * [ 69 -50 ] [ 71 -52 ] (AB)^-1 = [ 69/-38 -50/-38 ] [ 71/-38 -52/-38 ] (AB)^-1 = [ -69/38 50/38 ] [ -71/38 52/38 ] (AB)^-1 = [ -69/38 25/19 ] [ -71/38 26/19 ] Langkah 3: Hitung perkalian matriks BA. BA = [ -9 5 ] [ 3 -5 ] [ 5 -7 ] [ 4 -7 ] Elemen BA(1,1) = (-9)(3) + (5)(4) = -27 + 20 = -7 Elemen BA(1,2) = (-9)(-5) + (5)(-7) = 45 - 35 = 10 Elemen BA(2,1) = (5)(3) + (-7)(4) = 15 - 28 = -13 Elemen BA(2,2) = (5)(-5) + (-7)(-7) = -25 + 49 = 24 Jadi, BA = [ -7 10 ] [ -13 24 ] Langkah 4: Hitung invers dari BA, yaitu (BA)^-1. determinant(BA) = (-7)(24) - (10)(-13) = -168 - (-130) = -168 + 130 = -38 (BA)^-1 = (1 / -38) * [ 24 -10 ] [ 13 -7 ] (BA)^-1 = [ 24/-38 -10/-38 ] [ 13/-38 -7/-38 ] (BA)^-1 = [ -24/38 10/38 ] [ -13/38 7/38 ] (BA)^-1 = [ -12/19 5/19 ] [ -13/38 7/38 ]
Buka akses pembahasan jawaban
Topik: Matriks
Section: Invers Matriks, Operasi Matriks
Apakah jawaban ini membantu?