Command Palette

Search for a command to run...

Kelas 11Kelas 10mathTrigonometri

Diketahui alpha di kuadran III dan beta di kuadran II. Jika

Pertanyaan

Diketahui alpha di kuadran III dan beta di kuadran II. Jika cos a = -4/5 dan tan b = -5/12. Tentukan sin(a+b), sin(a-b), cos(a+b), cos(a-b), tan(a+b), dan tan(a-b)!

Solusi

Verified

sin(a+b)=16/65, sin(a-b)=56/65, cos(a+b)=63/65, cos(a-b)=33/65, tan(a+b)=16/63, tan(a-b)=56/33

Pembahasan

Diketahui: Alpha di kuadran III, cos a = -4/5 Beta di kuadran II, tan b = -5/12 Langkah 1: Cari nilai sin a, tan a, sin b, cos b. Untuk Alpha (kuadran III): cos a = -4/5 (samping/miring). Karena di kuadran III, kedua sisi (x dan y) negatif. Sisi depan (y) = -sqrt(miring^2 - samping^2) = -sqrt(5^2 - (-4)^2) = -sqrt(25 - 16) = -sqrt(9) = -3. Jadi, sin a = -3/5, tan a = sin a / cos a = (-3/5) / (-4/5) = 3/4. Untuk Beta (kuadran II): tan b = -5/12 (depan/samping). Karena di kuadran II, sisi depan (y) positif dan sisi samping (x) negatif. Sisi samping (x) = -12. Sisi depan (y) = 5. Miring = sqrt(samping^2 + depan^2) = sqrt((-12)^2 + 5^2) = sqrt(144 + 25) = sqrt(169) = 13. Jadi, sin b = 5/13, cos b = -12/13. Langkah 2: Hitung nilai-nilai yang diminta menggunakan rumus penjumlahan dan pengurangan. 1. **sin(a + b)** = sin a cos b + cos a sin b = (-3/5)(-12/13) + (-4/5)(5/13) = 36/65 - 20/65 = 16/65 2. **sin(a - b)** = sin a cos b - cos a sin b = (-3/5)(-12/13) - (-4/5)(5/13) = 36/65 + 20/65 = 56/65 3. **cos(a + b)** = cos a cos b - sin a sin b = (-4/5)(-12/13) - (-3/5)(5/13) = 48/65 + 15/65 = 63/65 4. **cos(a - b)** = cos a cos b + sin a sin b = (-4/5)(-12/13) + (-3/5)(5/13) = 48/65 - 15/65 = 33/65 5. **tan(a + b)** = (tan a + tan b) / (1 - tan a tan b) = (3/4 + (-5/12)) / (1 - (3/4)(-5/12)) = (9/12 - 5/12) / (1 + 15/48) = (4/12) / (48/48 + 15/48) = (1/3) / (63/48) = (1/3) * (48/63) = 16/63 6. **tan(a - b)** = (tan a - tan b) / (1 + tan a tan b) = (3/4 - (-5/12)) / (1 + (3/4)(-5/12)) = (9/12 + 5/12) / (1 - 15/48) = (14/12) / (48/48 - 15/48) = (7/6) / (33/48) = (7/6) * (48/33) = 7 * 8 / 33 = 56/33 Jadi, sin(a+b)=16/65, sin(a-b)=56/65, cos(a+b)=63/65, cos(a-b)=33/65, tan(a+b)=16/63, tan(a-b)=56/33.
Topik: Identitas Trigonometri
Section: Rumus Jumlah Dan Selisih Sudut

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...