Kelas 12Kelas 10Kelas 11mathTrigonometri
Diketahui sin theta=-(akar(5))/(3) dan (3 pi)/(2) <= theta
Pertanyaan
Diketahui sin theta=-(akar(5))/(3) dan (3 pi)/(2) <= theta <= (5 pi)/(3) . Nilai sin 2 theta +cos 2 theta adalah...
Solusi
Verified
-$\frac{1 + 4\sqrt{5}}{9}$
Pembahasan
Diketahui: $\sin \theta = -\frac{\sqrt{5}}{3}$ $rac{3\pi}{2} \le \theta \le \frac{5\pi}{3}$ Kita perlu mencari nilai $\sin 2\theta + \cos 2\theta$. Pertama, cari nilai $\cos \theta$. Karena $\frac{3\pi}{2} \le \theta \le \frac{5\pi}{3}$ berada di kuadran IV, nilai $\cos \theta$ positif. Menggunakan identitas $\sin^2 \theta + \cos^2 \theta = 1$: $(\frac{-\sqrt{5}}{3})^2 + \cos^2 \theta = 1$ $rac{5}{9} + \cos^2 \theta = 1$ $\cos^2 \theta = 1 - \frac{5}{9}$ $\cos^2 \theta = \frac{9}{9} - \frac{5}{9}$ $\cos^2 \theta = \frac{4}{9}$ $\cos \theta = \sqrt{\frac{4}{9}} = \frac{2}{3}$ (karena di kuadran IV, cos positif) Selanjutnya, hitung $\sin 2\theta$ dan $\cos 2\theta$: $\sin 2\theta = 2 \sin \theta \cos \theta$ $\sin 2\theta = 2 \times (-\frac{\sqrt{5}}{3}) \times (\frac{2}{3})$ $\sin 2\theta = -\frac{4\sqrt{5}}{9}$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $\cos 2\theta = (\frac{2}{3})^2 - (-\frac{\sqrt{5}}{3})^2$ $\cos 2\theta = \frac{4}{9} - \frac{5}{9}$ $\cos 2\theta = -\frac{1}{9}$ Terakhir, jumlahkan $\sin 2\theta$ dan $\cos 2\theta$: $\sin 2\theta + \cos 2\theta = -\frac{4\sqrt{5}}{9} + (-\frac{1}{9})$ $\sin 2\theta + \cos 2\theta = \frac{-4\sqrt{5} - 1}{9}$ $\sin 2\theta + \cos 2\theta = -\frac{1 + 4\sqrt{5}}{9}$
Topik: Identitas Trigonometri
Section: Rumus Sudut Ganda
Apakah jawaban ini membantu?