Command Palette

Search for a command to run...

Kelas 11Kelas 12mathAljabar

Invers dari matriks R=(1 -3 -6 1 1 0 0 2 4) adalah

Pertanyaan

Invers dari matriks R=(1 -3 -6 1 1 0 0 2 4) adalah R^-1=....

Solusi

Verified

R^-1 = [[1, 0, 3/2], [-1, 1, -3/2], [1/2, -1/2, 1]]

Pembahasan

Untuk mencari invers dari matriks R=(1 -3 -6 1 1 0 0 2 4), kita perlu melakukan beberapa langkah: 1. **Hitung Determinan Matriks R (det(R))**: det(R) = 1 * (1*4 - 0*2) - (-3) * (1*4 - 0*0) + (-6) * (1*2 - 1*0) det(R) = 1 * (4 - 0) + 3 * (4 - 0) - 6 * (2 - 0) det(R) = 1 * 4 + 3 * 4 - 6 * 2 det(R) = 4 + 12 - 12 det(R) = 4 2. **Cari Adjoin Matriks R (adj(R))**: Adjoin matriks adalah transpose dari matriks kofaktornya. Kofaktor: C11 = (-1)^(1+1) * det([[1, 0], [2, 4]]) = 1 * (1*4 - 0*2) = 4 C12 = (-1)^(1+2) * det([[1, 0], [0, 4]]) = -1 * (1*4 - 0*0) = -4 C13 = (-1)^(1+3) * det([[1, 1], [0, 2]]) = 1 * (1*2 - 1*0) = 2 C21 = (-1)^(2+1) * det([[-3, -6], [2, 4]]) = -1 * ((-3)*4 - (-6)*2) = -1 * (-12 - (-12)) = -1 * (-12 + 12) = 0 C22 = (-1)^(2+2) * det([[1, -6], [0, 4]]) = 1 * (1*4 - (-6)*0) = 1 * (4 - 0) = 4 C23 = (-1)^(2+3) * det([[1, -3], [0, 2]]) = -1 * (1*2 - (-3)*0) = -1 * (2 - 0) = -2 C31 = (-1)^(3+1) * det([[-3, -6], [1, 0]]) = 1 * ((-3)*0 - (-6)*1) = 1 * (0 - (-6)) = 1 * 6 = 6 C32 = (-1)^(3+2) * det([[1, -6], [1, 0]]) = -1 * (1*0 - (-6)*1) = -1 * (0 - (-6)) = -1 * 6 = -6 C33 = (-1)^(3+3) * det([[1, -3], [1, 1]]) = 1 * (1*1 - (-3)*1) = 1 * (1 - (-3)) = 1 * (1 + 3) = 4 Matriks Kofaktor: [[4, -4, 2], [0, 4, -2], [6, -6, 4]] Adjoin Matriks R (Transpose dari Matriks Kofaktor): adj(R) = [[4, 0, 6], [-4, 4, -6], [2, -2, 4]] 3. **Hitung Invers Matriks R (R^-1)**: R^-1 = (1/det(R)) * adj(R) R^-1 = (1/4) * [[4, 0, 6], [-4, 4, -6], [2, -2, 4]] R^-1 = [[4/4, 0/4, 6/4], [-4/4, 4/4, -6/4], [2/4, -2/4, 4/4]] R^-1 = [[1, 0, 3/2], [-1, 1, -3/2], [1/2, -1/2, 1]] Jadi, invers dari matriks R adalah R^-1 = [[1, 0, 3/2], [-1, 1, -3/2], [1/2, -1/2, 1]].

Buka akses pembahasan jawaban

Topik: Matriks
Section: Invers Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...