Command Palette

Search for a command to run...

Kelas 12Kelas 11Kelas 10mathAljabar

Let s(x)=(2^x-2^-x)/2 and c(x)=(2^x+2^-x)/2. Compute

Pertanyaan

Diberikan s(x)=(2^x-2^-x)/2 dan c(x)=(2^x+2^-x)/2. Hitunglah nilai dari [c(x)]^2-[s(x)]^2.

Solusi

Verified

1

Pembahasan

Untuk menghitung [c(x)]^2 - [s(x)]^2, kita substitusikan definisi c(x) dan s(x): c(x) = (2^x + 2^-x) / 2 s(x) = (2^x - 2^-x) / 2 [c(x)]^2 = [ (2^x + 2^-x) / 2 ]^2 = ( (2^x)^2 + 2(2^x)(2^-x) + (2^-x)^2 ) / 4 = (2^{2x} + 2(1) + 2^{-2x}) / 4 = (2^{2x} + 2 + 2^{-2x}) / 4 [s(x)]^2 = [ (2^x - 2^-x) / 2 ]^2 = ( (2^x)^2 - 2(2^x)(2^-x) + (2^-x)^2 ) / 4 = (2^{2x} - 2(1) + 2^{-2x}) / 4 = (2^{2x} - 2 + 2^{-2x}) / 4 [c(x)]^2 - [s(x)]^2 = [ (2^{2x} + 2 + 2^{-2x}) / 4 ] - [ (2^{2x} - 2 + 2^{-2x}) / 4 ] = ( (2^{2x} + 2 + 2^{-2x}) - (2^{2x} - 2 + 2^{-2x}) ) / 4 = ( 2^{2x} + 2 + 2^{-2x} - 2^{2x} + 2 - 2^{-2x} ) / 4 = (2 + 2) / 4 = 4 / 4 = 1 Jadi, [c(x)]^2 - [s(x)]^2 = 1.

Buka akses pembahasan jawaban

Topik: Fungsi Eksponensial
Section: Identitas Trigonometri Hiperbolik

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...