Command Palette

Search for a command to run...

Kelas 11Kelas 10mathAljabar

Persamaan garis yang melalui titik (-2,-3) dan bergradien

Pertanyaan

Tentukan persamaan garis yang melalui titik (-2,-3) dan bergradien 1/2.

Solusi

Verified

Persamaan garisnya adalah y = (1/2)x - 2 atau x - 2y - 4 = 0.

Pembahasan

Untuk menentukan persamaan garis yang melalui titik (-2, -3) dan bergradien 1/2, kita dapat menggunakan rumus umum persamaan garis lurus, yaitu y - y1 = m(x - x1), di mana (x1, y1) adalah koordinat titik yang dilalui dan m adalah gradiennya. Diketahui: Titik (x1, y1) = (-2, -3) Gradien (m) = 1/2 Substitusikan nilai-nilai tersebut ke dalam rumus: y - (-3) = 1/2 (x - (-2)) y + 3 = 1/2 (x + 2) Untuk menghilangkan pecahan, kita dapat mengalikan kedua sisi persamaan dengan 2: 2(y + 3) = 1(x + 2) 2y + 6 = x + 2 Selanjutnya, kita susun ulang persamaan tersebut agar sesuai dengan bentuk umum Ax + By + C = 0 atau y = mx + c. Mari kita susun ke bentuk y = mx + c: 2y = x + 2 - 6 2y = x - 4 y = (1/2)x - 2 Atau ke bentuk Ax + By + C = 0: x - 2y + 2 - 6 = 0 x - 2y - 4 = 0 Jadi, persamaan garis yang melalui titik (-2,-3) dan bergradien 1/2 adalah y = (1/2)x - 2 atau x - 2y - 4 = 0.
Topik: Persamaan Garis Lurus
Section: Menentukan Persamaan Garis

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...