Kelas 12Kelas 11Kelas 10mathAljabar
(3-5x-2x^2)/(2x^2-7x+3) dapat disederhanakan menjadi ....
Pertanyaan
(3-5x-2x^2)/(2x^2-7x+3) dapat disederhanakan menjadi ....
Solusi
Verified
Dapat disederhanakan menjadi -(x+3)/(x-3) atau (x+3)/(3-x).
Pembahasan
Untuk menyederhanakan ekspresi rasional (3-5x-2x^2)/(2x^2-7x+3), kita perlu memfaktorkan baik pembilang maupun penyebut. Faktorisasi Pembilang: -2x^2 - 5x + 3 Kita bisa mencari dua bilangan yang hasil kalinya (-2)*(3) = -6 dan jumlahnya -5. Bilangan tersebut adalah -6 dan 1. -2x^2 - 6x + x + 3 -2x(x + 3) + 1(x + 3) (-2x + 1)(x + 3) Atau bisa juga ditulis sebagai (1-2x)(x+3). Faktorisasi Penyebut: 2x^2 - 7x + 3 Kita cari dua bilangan yang hasil kalinya (2)*(3) = 6 dan jumlahnya -7. Bilangan tersebut adalah -6 dan -1. 2x^2 - 6x - x + 3 2x(x - 3) - 1(x - 3) (2x - 1)(x - 3) Jadi, ekspresi tersebut menjadi: (1-2x)(x+3) / ((2x-1)(x-3)) Perhatikan bahwa (1-2x) = -(2x-1). Maka, ekspresi dapat disederhanakan menjadi: -(2x-1)(x+3) / ((2x-1)(x-3)) Kita bisa membatalkan faktor (2x-1), asalkan 2x-1 != 0, yaitu x != 1/2. Sehingga, bentuk sederhananya adalah -(x+3) / (x-3). Ini dapat juga ditulis sebagai (x+3) / -(x-3) atau (x+3) / (3-x). Jadi, (3-5x-2x^2)/(2x^2-7x+3) dapat disederhanakan menjadi -(x+3)/(x-3) atau (x+3)/(3-x), dengan syarat x != 1/2 dan x != 3.
Buka akses pembahasan jawaban
Topik: Aljabar
Section: Penyederhanaan Pecahan Aljabar
Apakah jawaban ini membantu?