Command Palette

Search for a command to run...

Kelas SmamathMatematika Wajib

5log(a+b)+3log(a-b)-4log(a^2-b^2)=...

Pertanyaan

Sederhanakanlah: 5log(a+b) + 3log(a-b) - 4log(a^2-b^2)

Solusi

Verified

log(1 / ((a-b)^5 * (a+b)^3)) atau -log((a-b)^5 * (a+b)^3)

Pembahasan

Untuk menyederhanakan persamaan logaritma 5log(a+b) + 3log(a-b) - 4log(a^2-b^2), kita perlu menggunakan sifat-sifat logaritma: 1. n log(x) = log(x^n) 2. log(x) + log(y) = log(xy) 3. log(x) - log(y) = log(x/y) Menerapkan sifat pertama: log((a+b)^5) + log((a-b)^3) - log((a^2-b^2)^4) Menerapkan sifat kedua: log([(a+b)^5 * (a-b)^3]) - log((a^2-b^2)^4) Mengingat bahwa a^2 - b^2 = (a+b)(a-b), maka (a^2-b^2)^4 = [(a+b)(a-b)]^4 = (a+b)^4 * (a-b)^4. Menerapkan sifat ketiga: log([ (a+b)^5 * (a-b)^3 ]) / log([ (a+b)^4 * (a-b)^4 ]) Menyederhanakan pangkat: log [ (a+b) / ((a-b) * (a^2-b^2)^4 / ((a+b)^4 * (a-b)^4)) ] log [ (a+b) / ((a-b) * (a+b)^4 * (a-b)^4) ] log [ (a+b) / ((a-b)^5 * (a+b)^4) ] log [ 1 / ((a-b)^5 * (a+b)^3) ] = -log [(a-b)^5 * (a+b)^3] Jadi, hasil penyederhanaan dari 5log(a+b) + 3log(a-b) - 4log(a^2-b^2) adalah log(1 / ((a-b)^5 * (a+b)^3)) atau -log((a-b)^5 * (a+b)^3).
Topik: Logaritma
Section: Sifat Sifat Logaritma

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...