Command Palette

Search for a command to run...

Kelas 9Kelas 10Kelas 8mathGeometri

B a c A b C Pada segitiga ABC di samping, sudut A = 90, b =

Pertanyaan

Pada segitiga ABC, jika sudut A = 90 derajat, panjang sisi b = 20 cm, dan jumlah panjang sisi a + c = 50 cm, berapakah nilai a dan c?

Solusi

Verified

a = 29 cm, c = 21 cm

Pembahasan

Diketahui segitiga ABC siku-siku di A, dengan panjang sisi b = 20 cm dan $a+c=50$ cm. Dalam segitiga siku-siku, berlaku teorema Pythagoras: $a^2 + c^2 = b^2$. Namun, kita diberikan $b = 20$ cm, yang seharusnya adalah sisi miring (hipotenusa) jika sudut A adalah sudut siku-sikunya. Dalam konvensi umum, sisi a berhadapan dengan sudut A, sisi b dengan sudut B, dan sisi c dengan sudut C. Jika A = 90°, maka sisi a adalah hipotenusa. Asumsi yang lebih umum adalah bahwa 'b' merujuk pada sisi BC (hipotenusa), 'a' merujuk pada sisi AC, dan 'c' merujuk pada sisi AB. Jika sudut A = 90°, maka sisi a adalah hipotenusa. Mari kita gunakan konvensi bahwa b adalah sisi di depan sudut B, a adalah sisi di depan sudut A, dan c adalah sisi di depan sudut C. Jika sudut A = 90°, maka a adalah hipotenusa. Teorema Pythagoras: $a^2 = b^2 + c^2$. Kita diberikan: b = 20 cm dan a + c = 50 cm. Dari $a + c = 50$, kita dapatkan $c = 50 - a$. Substitusikan ke dalam teorema Pythagoras: $a^2 = (20)^2 + (50 - a)^2$ $a^2 = 400 + (2500 - 100a + a^2)$ $a^2 = 400 + 2500 - 100a + a^2$ $0 = 2900 - 100a$ $100a = 2900$ $a = 29$ cm. Sekarang cari nilai c: $c = 50 - a$ $c = 50 - 29$ $c = 21$ cm. Jadi, nilai a adalah 29 cm dan nilai c adalah 21 cm.

Buka akses pembahasan jawaban

Topik: Segitiga Siku Siku
Section: Teorema Pythagoras

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...