Command Palette

Search for a command to run...

Kelas 12Kelas 11mathKalkulus

Berdasarkan formula lim h->0 (f(x+h)-f(x))/(h) tentukan

Pertanyaan

Berdasarkan formula lim h->0 (f(x+h)-f(x))/(h), tentukan f'(x) untuk masing-masing fungsi berikut: a. f(x)=(x)/(x-5) b. f(x)=(x+3)/(x).

Solusi

Verified

Turunan dari f(x)=(x)/(x-5) adalah f'(x) = -5/(x-5)² dan turunan dari f(x)=(x+3)/(x) adalah f'(x) = -3/x².

Pembahasan

Untuk menentukan turunan pertama (f'(x)) dari fungsi yang diberikan menggunakan definisi turunan, yaitu lim h->0 (f(x+h)-f(x))/(h): a. f(x) = x / (x-5) f(x+h) = (x+h) / ((x+h)-5) f(x+h) - f(x) = [(x+h) / (x+h-5)] - [x / (x-5)] = [(x+h)(x-5) - x(x+h-5)] / [(x+h-5)(x-5)] = [x² - 5x + hx - 5h - x² - hx + 5x] / [(x+h-5)(x-5)] = -5h / [(x+h-5)(x-5)] (f(x+h)-f(x))/(h) = [-5h / [(x+h-5)(x-5)]] / h = -5 / [(x+h-5)(x-5)] lim h->0 (f(x+h)-f(x))/(h) = lim h->0 [-5 / [(x+h-5)(x-5)]] f'(x) = -5 / [(x-5)(x-5)] f'(x) = -5 / (x-5)² b. f(x) = (x+3) / x f(x+h) = ((x+h)+3) / (x+h) f(x+h) - f(x) = [(x+h+3) / (x+h)] - [(x+3) / x] = [x(x+h+3) - (x+3)(x+h)] / [x(x+h)] = [x² + hx + 3x - (x² + hx + 3x + 3h)] / [x(x+h)] = [x² + hx + 3x - x² - hx - 3x - 3h] / [x(x+h)] = -3h / [x(x+h)] (f(x+h)-f(x))/(h) = [-3h / [x(x+h)]] / h = -3 / [x(x+h)] lim h->0 (f(x+h)-f(x))/(h) = lim h->0 [-3 / [x(x+h)]] f'(x) = -3 / (x*x) f'(x) = -3 / x²

Buka akses pembahasan jawaban

Topik: Limit, Turunan
Section: Definisi Turunan, Menghitung Turunan Menggunakan Definisi

Apakah jawaban ini membantu?