Kelas SmaKelas SmpmathAritmatika SosialAljabar
Dua buah bilangan selisihnya 12. Jika tiga kali bilangan
Pertanyaan
Dua buah bilangan selisihnya 12. Jika tiga kali bilangan yang kecil ditambah dengan setengah kali bilangan yang besar hasilnya 111, tentukanlah bilangan-bilangan tersebut!
Solusi
Verified
Bilangan-bilangan tersebut adalah 42 dan 30.
Pembahasan
Untuk menyelesaikan soal ini, kita perlu mencari dua bilangan yang memenuhi kedua kondisi yang diberikan. Misalkan kedua bilangan tersebut adalah x dan y, dengan x sebagai bilangan yang lebih besar dan y sebagai bilangan yang lebih kecil. Kondisi 1: Dua buah bilangan selisihnya 12. Ini dapat ditulis sebagai persamaan: x - y = 12 (Persamaan 1) Kondisi 2: Tiga kali bilangan yang kecil ditambah dengan setengah kali bilangan yang besar hasilnya 111. Ini dapat ditulis sebagai persamaan: 3y + (1/2)x = 111 (Persamaan 2) Sekarang kita memiliki sistem dua persamaan linear dengan dua variabel. Kita bisa menyelesaikannya menggunakan metode substitusi atau eliminasi. Metode Substitusi: Dari Persamaan 1, kita bisa menyatakan x dalam bentuk y: x = y + 12 Substitusikan nilai x ini ke dalam Persamaan 2: 3y + (1/2)(y + 12) = 111 3y + (1/2)y + 6 = 111 Untuk menghilangkan pecahan, kalikan seluruh persamaan dengan 2: 6y + y + 12 = 222 7y + 12 = 222 7y = 222 - 12 7y = 210 y = 210 / 7 y = 30 Sekarang kita sudah menemukan nilai y (bilangan yang lebih kecil). Substitusikan nilai y = 30 kembali ke Persamaan 1 (atau ekspresi x = y + 12) untuk menemukan nilai x: x = 30 + 12 x = 42 Jadi, kedua bilangan tersebut adalah 42 dan 30. Verifikasi: Selisih: 42 - 30 = 12 (Benar) Tiga kali bilangan kecil ditambah setengah bilangan besar: 3*(30) + (1/2)*(42) = 90 + 21 = 111 (Benar) Oleh karena itu, kedua bilangan tersebut adalah 42 dan 30.
Buka akses pembahasan jawaban
Topik: Sistem Persamaan Linear Dua Variabel
Section: Penyelesaian Spldv Dengan Substitusi
Apakah jawaban ini membantu?