Kelas 9Kelas 10Kelas 8mathAljabar
Hasil perkalian ((3p^2)/(4q))^2 dengan ((2q^2)/(6p))^3
Pertanyaan
Hasil perkalian ((3p^2)/(4q))^2 dengan ((2q^2)/(6p))^3 adalah .....
Solusi
Verified
Hasil perkaliannya adalah (pq^4)/48.
Pembahasan
Untuk menyelesaikan perkalian ini, kita perlu menyederhanakan setiap suku terlebih dahulu sebelum mengalikannya: Suku pertama: ((3p^2)/(4q))^2 = (3^2 * (p^2)^2) / (4^2 * q^2) = (9 * p^4) / (16 * q^2) = (9p^4)/(16q^2) Suku kedua: ((2q^2)/(6p))^3 = (2^3 * (q^2)^3) / (6^3 * p^3) = (8 * q^6) / (216 * p^3) = (8q^6)/(216p^3) Sekarang, kita kalikan kedua hasil tersebut: ((9p^4)/(16q^2)) * ((8q^6)/(216p^3)) Kalikan pembilang dengan pembilang dan penyebut dengan penyebut: (9p^4 * 8q^6) / (16q^2 * 216p^3) Sederhanakan koefisien: (72 * p^4 * q^6) / (3456 * q^2 * p^3) Sekarang, sederhanakan variabel dengan menggunakan sifat eksponen (a^m / a^n = a^(m-n)): p^4 / p^3 = p^(4-3) = p^1 = p q^6 / q^2 = q^(6-2) = q^4 Sekarang, sederhanakan koefisien 72/3456. Kita bisa membagi keduanya dengan faktor persekutuan terbesar mereka. Mari kita coba membagi dengan 72: 3456 / 72 = 48 Jadi, perbandingannya adalah 1/48. Menggabungkan kembali hasilnya: (1 * p * q^4) / 48 = (pq^4)/48 Jadi, hasil perkaliannya adalah (pq^4)/48.
Buka akses pembahasan jawaban
Topik: Pangkat Dan Akar
Section: Operasi Bentuk Pangkat
Apakah jawaban ini membantu?