Kelas 11Kelas 10Kelas 12mathPeluang
Perhatikan gambar berikut.Sumber: www.shuterstock.comBanyak
Pertanyaan
Banyak cara 12 buku dapat dibagi antara A dan B sedemikian rupa sehingga salah satu mendapat 9 buku dan yang lainnya mendapat 3 buku adalah ....
Solusi
Verified
440 cara
Pembahasan
Untuk menyelesaikan soal ini, kita perlu menggunakan konsep kombinasi. Kita ingin mencari banyaknya cara membagi 12 buku kepada A dan B, di mana salah satu mendapat 9 buku dan yang lainnya 3 buku. Kasus 1: A mendapat 9 buku dan B mendapat 3 buku. Banyak cara memilih 9 buku dari 12 buku untuk A adalah kombinasi C(12, 9). C(12, 9) = 12! / (9! * (12-9)!) = 12! / (9! * 3!) = (12 * 11 * 10) / (3 * 2 * 1) = 2 * 11 * 10 = 220 cara. Setelah A mendapat 9 buku, sisa 3 buku otomatis diberikan kepada B. Jadi, ada 220 cara untuk kasus ini. Kasus 2: A mendapat 3 buku dan B mendapat 9 buku. Banyak cara memilih 3 buku dari 12 buku untuk A adalah kombinasi C(12, 3). C(12, 3) = 12! / (3! * (12-3)!) = 12! / (3! * 9!) = (12 * 11 * 10) / (3 * 2 * 1) = 2 * 11 * 10 = 220 cara. Setelah A mendapat 3 buku, sisa 9 buku otomatis diberikan kepada B. Jadi, ada 220 cara untuk kasus ini. Total banyak cara adalah jumlah cara dari kedua kasus tersebut. Total cara = 220 (Kasus 1) + 220 (Kasus 2) = 440 cara. Jadi, banyak cara 12 buku dapat dibagi antara A dan B sedemikian rupa sehingga salah satu mendapat 9 buku dan yang lainnya mendapat 3 buku adalah 440.
Buka akses pembahasan jawaban
Topik: Kombinasi
Section: Konsep Dasar Kombinasi
Apakah jawaban ini membantu?