Kelas 11mathGeometri
Salah satu persamaan garis singgung lingkaran x^2+y^2=10
Pertanyaan
Salah satu persamaan garis singgung lingkaran x^2+y^2=10 yang bergradien 3 adalah ...
Solusi
Verified
3x - y - 10 = 0
Pembahasan
Persamaan lingkaran yang diberikan adalah x^2 + y^2 = 10. Ini adalah persamaan lingkaran dengan pusat di (0,0) dan jari-jari sqrt(10). Gradien garis singgung yang dicari adalah m = 3. Rumus persamaan garis singgung lingkaran x^2 + y^2 = r^2 yang bergradien m adalah y = mx ± r * sqrt(m^2 + 1). Dalam kasus ini, r^2 = 10, sehingga r = sqrt(10). m = 3. Maka, y = 3x ± sqrt(10) * sqrt(3^2 + 1) y = 3x ± sqrt(10) * sqrt(9 + 1) y = 3x ± sqrt(10) * sqrt(10) y = 3x ± 10 Kita dapat menulis ulang persamaan ini menjadi bentuk standar Ax + By + C = 0. Pilihan 1: y = 3x + 10 0 = 3x - y + 10 3x - y + 10 = 0 Pilihan 2: y = 3x - 10 0 = 3x - y - 10 3x - y - 10 = 0 Sekarang kita bandingkan dengan pilihan yang diberikan: a. 3x - y - 8 = 0 (Tidak cocok) d. 3x + y + 8 = 0 (Gradien -3, tidak cocok) b. 3x - y - 10 = 0 (Cocok) e. 3x + y - 10 = 0 (Gradien -3, tidak cocok) c. 3x - y + 12 = 0 (Tidak cocok) Jadi, salah satu persamaan garis singgung lingkaran x^2+y^2=10 yang bergradien 3 adalah 3x - y - 10 = 0.
Buka akses pembahasan jawaban
Topik: Lingkaran
Section: Garis Singgung Lingkaran
Apakah jawaban ini membantu?