Command Palette

Search for a command to run...

Kelas 11Kelas 12mathKalkulus

Sudut puncak suatu segitiga sama kaki bertambah besar

Pertanyaan

Sudut puncak suatu segitiga sama kaki bertambah besar dengan laju π/6 radian/menit. Sisi yang sama mempunyai panjang 100 cm. Pada saat sudut puncak sebesar π/6 radian, seberapa cepat bertambahnya luas segitiga?

Solusi

Verified

Luas segitiga bertambah dengan laju (1250√3 π) / 3 cm²/menit.

Pembahasan

Untuk menyelesaikan soal ini, kita perlu menggunakan konsep turunan dalam kaitannya dengan perubahan luas segitiga terhadap perubahan sudut puncak. Diketahui: - Segitiga sama kaki - Panjang sisi yang sama (a = b) = 100 cm - Laju perubahan sudut puncak (dC/dt) = π/6 radian/menit - Sudut puncak saat ditanyakan (C) = π/6 radian - Luas segitiga (A) = 1/2 ab sin C Rumus luas segitiga dapat ditulis sebagai: A = 1/2 * 100 * 100 * sin C = 5000 sin C Kita perlu mencari laju perubahan luas segitiga terhadap waktu (dA/dt). Kita dapat menggunakan aturan rantai: dA/dt = (dA/dC) * (dC/dt) Langkah 1: Cari turunan A terhadap C (dA/dC) dA/dC = d/dC (5000 sin C) dA/dC = 5000 cos C Langkah 2: Substitusikan nilai C dan dC/dt ke dalam rumus aturan rantai. Pada saat C = π/6 radian, cos C = cos(π/6) = √3/2. dA/dt = (5000 cos C) * (dC/dt) dA/dt = (5000 * √3/2) * (π/6) dA/dt = 2500√3 * π/6 dA/dt = (1250√3 π) / 3 Jadi, luas segitiga bertambah dengan laju (1250√3 π) / 3 cm²/menit.

Buka akses pembahasan jawaban

Topik: Turunan Fungsi Trigonometri
Section: Laju Yang Berkaitan

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...