Kelas 11Kelas 10mathAljabar
Tentukan f^(-1)(x), g^(-1)(x),(fog)^(-1)(x), dan
Pertanyaan
Jika diketahui f(x) = x/(x+1) dan g(x) = 2x+3, tentukan f^-1(x), g^-1(x), (fog)^-1(x), dan (gof)^-1(x).
Solusi
Verified
f^-1(x) = x/(1-x), g^-1(x) = (x-3)/2, (fog)^-1(x) = (4x-3)/(2-2x), (gof)^-1(x) = (x-3)/(5-x).
Pembahasan
Diketahui: f(x) = x/(x+1) dan g(x) = 2x+3 1. Mencari f^-1(x): Misalkan y = f(x) = x/(x+1) y(x+1) = x yx + y = x y = x - yx y = x(1 - y) x = y / (1 - y) Jadi, f^-1(x) = x / (1 - x) 2. Mencari g^-1(x): Misalkan y = g(x) = 2x + 3 y - 3 = 2x x = (y - 3) / 2 Jadi, g^-1(x) = (x - 3) / 2 3. Mencari (fog)^-1(x) = (g^-1 o f^-1)(x): (fog)^-1(x) = g^-1(f^-1(x)) = g^-1(x / (1 - x)) = [(x / (1 - x)) - 3] / 2 = [(x - 3(1 - x)) / (1 - x)] / 2 = (x - 3 + 3x) / (2(1 - x)) = (4x - 3) / (2 - 2x) 4. Mencari (gof)^-1(x) = (f^-1 o g^-1)(x): (gof)^-1(x) = f^-1(g^-1(x)) = f^-1((x - 3) / 2) = [(x - 3) / 2] / [1 - (x - 3) / 2] = [(x - 3) / 2] / [(2 - (x - 3)) / 2] = (x - 3) / (2 - x + 3) = (x - 3) / (5 - x)
Topik: Fungsi Invers, Komposisi Fungsi
Section: Operasi Fungsi, Fungsi Invers
Apakah jawaban ini membantu?