Kelas 12Kelas 11Kelas 10mathAljabar
Tentukan hasil bagi dan sisa pembagian berikut: 2x^3 +
Pertanyaan
Tentukan hasil bagi dan sisa pembagian berikut: 2x³ + 3x² - 2x + 2 oleh 3x + 2
Solusi
Verified
Hasil bagi: (2/3)x² + (5/9)x - 28/27, Sisa: 110/27
Pembahasan
Kita akan melakukan pembagian polinomial 2x³ + 3x² - 2x + 2 oleh 3x + 2. Langkah 1: Bagi suku pertama dari polinomial yang dibagi (2x³) dengan suku pertama dari pembagi (3x). (2x³) / (3x) = (2/3)x² Ini adalah suku pertama dari hasil bagi. Langkah 2: Kalikan hasil bagi pertama ((2/3)x²) dengan seluruh pembagi (3x + 2). (2/3)x² * (3x + 2) = 2x³ + (4/3)x² Langkah 3: Kurangkan hasil perkalian ini dari polinomial yang dibagi. (2x³ + 3x² - 2x + 2) - (2x³ + (4/3)x²) = (3x² - (4/3)x²) - 2x + 2 = ((9/3)x² - (4/3)x²) - 2x + 2 = (5/3)x² - 2x + 2 Ini adalah sisa sementara. Langkah 4: Bagi suku pertama dari sisa sementara ((5/3)x²) dengan suku pertama dari pembagi (3x). ((5/3)x²) / (3x) = (5/9)x Ini adalah suku kedua dari hasil bagi. Langkah 5: Kalikan hasil bagi kedua ((5/9)x) dengan seluruh pembagi (3x + 2). (5/9)x * (3x + 2) = (15/9)x² + (10/9)x = (5/3)x² + (10/9)x Langkah 6: Kurangkan hasil perkalian ini dari sisa sementara. ((5/3)x² - 2x + 2) - ((5/3)x² + (10/9)x) = (-2x - (10/9)x) + 2 = ((-18/9)x - (10/9)x) + 2 = (-28/9)x + 2 Ini adalah sisa sementara kedua. Langkah 7: Bagi suku pertama dari sisa sementara kedua ((-28/9)x) dengan suku pertama dari pembagi (3x). ((-28/9)x) / (3x) = -28/27 Ini adalah suku ketiga dari hasil bagi. Langkah 8: Kalikan hasil bagi ketiga (-28/27) dengan seluruh pembagi (3x + 2). (-28/27) * (3x + 2) = (-84/27)x - 56/27 = (-28/9)x - 56/27 Langkah 9: Kurangkan hasil perkalian ini dari sisa sementara kedua. ((-28/9)x + 2) - ((-28/9)x - 56/27) = 2 - (-56/27) = 2 + 56/27 = 54/27 + 56/27 = 110/27 Ini adalah sisa akhir. Hasil bagi adalah: (2/3)x² + (5/9)x - 28/27 Sisa pembagian adalah: 110/27
Buka akses pembahasan jawaban
Topik: Pembagian Polinomial
Section: Pembagian Bersusun Polinomial
Apakah jawaban ini membantu?