Command Palette

Search for a command to run...

Kelas 12Kelas 11mathAljabar Linear

Tentukan inversi dari matriks A=[2 4 -2 -1 2 1 3 -3 4]!

Pertanyaan

Tentukan inversi dari matriks A=[[2, 4, -2], [-1, 2, 1], [3, -3, 4]]!

Solusi

Verified

A^-1 = [[11/56, -5/28, 1/7], [1/8, 1/4, 0], [-3/56, 9/28, 1/7]]

Pembahasan

Untuk mencari inversi dari matriks A=[[2, 4, -2], [-1, 2, 1], [3, -3, 4]], kita perlu menggunakan rumus invers matriks 3x3. Pertama, kita hitung determinan (det(A)). det(A) = 2 * ((2*4) - (1*-3)) - 4 * ((-1*4) - (1*3)) + (-2) * ((-1*-3) - (2*3)) det(A) = 2 * (8 - (-3)) - 4 * (-4 - 3) - 2 * (3 - 6) det(A) = 2 * (11) - 4 * (-7) - 2 * (-3) det(A) = 22 + 28 + 6 det(A) = 56 Karena determinan tidak nol (det(A) = 56 ≠ 0), maka matriks A memiliki invers. Selanjutnya, kita perlu mencari matriks adjoin (adj(A)). Matriks adjoin adalah transpose dari matriks kofaktor. Menghitung matriks kofaktor (C): C11 = +( (2*4) - (1*-3) ) = 8 + 3 = 11 C12 = -( (-1*4) - (1*3) ) = -(-4 - 3) = -(-7) = 7 C13 = +( (-1*-3) - (2*3) ) = 3 - 6 = -3 C21 = -( (4*4) - (-2*-3) ) = -(16 - 6) = -10 C22 = +( (2*4) - (-2*3) ) = 8 - (-6) = 8 + 6 = 14 C23 = -( (2*-3) - (4*3) ) = -(-6 - 12) = -(-18) = 18 C31 = +( (4*1) - (-2*2) ) = 4 - (-4) = 4 + 4 = 8 C32 = -( (2*1) - (-2*-1) ) = -(2 - 2) = 0 C33 = +( (2*2) - (4*-1) ) = 4 - (-4) = 4 + 4 = 8 Matriks Kofaktor (C) = [[11, 7, -3], [-10, 14, 18], [8, 0, 8]] Matriks Adjoin (adj(A)) adalah transpose dari C: adj(A) = C^T = [[11, -10, 8], [7, 14, 0], [-3, 18, 8]] Invers matriks A (A^-1) adalah (1/det(A)) * adj(A): A^-1 = (1/56) * [[11, -10, 8], [7, 14, 0], [-3, 18, 8]] A^-1 = [[11/56, -10/56, 8/56], [7/56, 14/56, 0/56], [-3/56, 18/56, 8/56]] Sederhanakan pecahan jika memungkinkan: A^-1 = [[11/56, -5/28, 1/7], [1/8, 1/4, 0], [-3/56, 9/28, 1/7]]

Buka akses pembahasan jawaban

Topik: Matriks
Section: Invers Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...