Command Palette

Search for a command to run...

Kelas SmamathKalkulus

Tentukan nilai dari integral x^(-3/7) dx.

Pertanyaan

Tentukan nilai dari integral x^(-3/7) dx.

Solusi

Verified

\frac{7}{4} x^{4/7} + C

Pembahasan

Untuk menentukan nilai dari integral tak tentu $\int x^{-3/7} dx$, kita gunakan aturan pangkat untuk integral: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, di mana $n \neq -1$. Dalam kasus ini, $n = -3/7$. Maka, $n+1 = -3/7 + 1 = -3/7 + 7/7 = 4/7$. Menggunakan aturan pangkat: $\int x^{-3/7} dx = \frac{x^{4/7}}{4/7} + C$. Mengubah pembagian dengan pecahan menjadi perkalian dengan kebalikannya: $\frac{x^{4/7}}{4/7} = x^{4/7} \times \frac{7}{4} = \frac{7}{4} x^{4/7}$. Jadi, hasil integralnya adalah $\frac{7}{4} x^{4/7} + C$.

Buka akses pembahasan jawaban

Topik: Integral Tak Tentu
Section: Integral Fungsi Pangkat, Aturan Pangkat Integral

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...