Kelas 10Kelas 11mathTrigonometri
ada segitiga lancip ABC diketahui panjang sisi AC=4 cm,
Pertanyaan
pada segitiga lancip ABC diketahui panjang sisi AC=4 cm, AB=5 cm, dan cos B=4/5. Nilai cos C adalah ....
Solusi
Verified
Nilai cos C adalah \sqrt{7}/4.
Pembahasan
Untuk menyelesaikan soal ini, kita akan menggunakan aturan cosinus dalam segitiga. Diketahui segitiga lancip ABC dengan: Panjang sisi AC = b = 4 cm Panjang sisi AB = c = 5 cm Nilai cos B = 4/5 Kita perlu mencari nilai cos C. Aturan cosinus menyatakan: $a^2 = b^2 + c^2 - 2bc \cos A$ $b^2 = a^2 + c^2 - 2ac \cos B$ $c^2 = a^2 + b^2 - 2ab \cos C$ Kita memiliki b, c, dan cos B. Kita bisa mencari panjang sisi a menggunakan aturan cosinus untuk $b^2$: $b^2 = a^2 + c^2 - 2ac \cos B$ $4^2 = a^2 + 5^2 - 2(a)(5)(4/5)$ $16 = a^2 + 25 - 8a$ $a^2 - 8a + 25 - 16 = 0$ $a^2 - 8a + 9 = 0$ Kita dapat menyelesaikan persamaan kuadrat ini untuk mencari nilai a menggunakan rumus kuadrat: $a = [-b ± \sqrt{b^2-4ac}] / 2a$ $a = [8 ± \sqrt{(-8)^2 - 4(1)(9)}] / 2(1)$ $a = [8 ± \sqrt{64 - 36}] / 2$ $a = [8 ± \sqrt{28}] / 2$ $a = [8 ± 2\sqrt{7}] / 2$ $a = 4 ± \sqrt{7}$ Jadi, ada dua kemungkinan nilai untuk sisi a: $a_1 = 4 + \sqrt{7}$ atau $a_2 = 4 - \sqrt{7}$. Sekarang, kita akan mencari cos C menggunakan aturan cosinus untuk $c^2$: $c^2 = a^2 + b^2 - 2ab \cos C$ $5^2 = a^2 + 4^2 - 2(a)(4) \cos C$ $25 = a^2 + 16 - 8a \cos C$ $8a \cos C = a^2 + 16 - 25$ $8a \cos C = a^2 - 9$ $\cos C = (a^2 - 9) / 8a$ Kasus 1: $a = 4 + \sqrt{7}$ $a^2 = (4 + \sqrt{7})^2 = 16 + 8\sqrt{7} + 7 = 23 + 8\sqrt{7}$ $\cos C = ((23 + 8\sqrt{7}) - 9) / (8(4 + \sqrt{7}))$ $\cos C = (14 + 8\sqrt{7}) / (32 + 8\sqrt{7})$ $ The problem states that triangle ABC is an acute triangle. We need to ensure that all angles are less than 90 degrees. Let's reconsider the problem. We are given AC=b=4, AB=c=5, and cos B = 4/5. We need to find cos C. We can also use the Law of Sines: $a/\sin A = b/\sin B = c/\sin C$. First, we need to find sin B. Since cos B = 4/5 and the triangle is acute, sin B must be positive. $\sin^2 B + \cos^2 B = 1$ $\sin^2 B + (4/5)^2 = 1$ $\sin^2 B + 16/25 = 1$ $\sin^2 B = 1 - 16/25 = 9/25$ $\sin B = 3/5$ (since B is an angle in an acute triangle, sin B > 0). Now, we can use the Law of Sines: $b/\sin B = c/\sin C$. $4 / (3/5) = 5 / \sin C$ $4 * (5/3) = 5 / \sin C$ $20/3 = 5 / \sin C$ $\sin C = 5 * (3/20)$ $\sin C = 15/20 = 3/4$ Now that we have sin C, we can find cos C. Since the triangle is acute, angle C must be less than 90 degrees, so cos C must be positive. $\sin^2 C + \cos^2 C = 1$ $(3/4)^2 + \cos^2 C = 1$ $9/16 + \cos^2 C = 1$ $\cos^2 C = 1 - 9/16 = 7/16$ $\cos C = \sqrt{7/16}$ $\cos C = \sqrt{7} / 4$ Let's verify if the triangle is indeed acute with these values. We have cos B = 4/5 = 0.8 (acute) We have sin C = 3/4, so cos C = sqrt(7)/4 ≈ 0.661 (acute) We need to find cos A. First, let's find side a. Using the law of cosines: $b^2 = a^2 + c^2 - 2ac \cos B$ $4^2 = a^2 + 5^2 - 2(a)(5)(4/5)$ $16 = a^2 + 25 - 8a$ $a^2 - 8a + 9 = 0$ $a = (8 ± \sqrt{64 - 36}) / 2 = (8 ± \sqrt{28}) / 2 = 4 ± \sqrt{7}$. Let's assume $a = 4 + \sqrt{7}$. Now find cos A using $a^2 = b^2 + c^2 - 2bc \cos A$ $(4 + \sqrt{7})^2 = 4^2 + 5^2 - 2(4)(5) \cos A$ $16 + 8\sqrt{7} + 7 = 16 + 25 - 40 \cos A$ $23 + 8\sqrt{7} = 41 - 40 \cos A$ $40 \cos A = 41 - 23 - 8\sqrt{7}$ $40 \cos A = 18 - 8\sqrt{7}$ $\cos A = (18 - 8\sqrt{7}) / 40 = (9 - 4\sqrt{7}) / 20$ $4\sqrt{7} ≈ 4 * 2.646 = 10.584$ $\cos A ≈ (9 - 10.584) / 20 = -1.584 / 20 = -0.0792$. This means angle A is obtuse, which contradicts the condition that the triangle is acute. Let's assume $a = 4 - \sqrt{7}$. $a^2 = (4 - \sqrt{7})^2 = 16 - 8\sqrt{7} + 7 = 23 - 8\sqrt{7}$ $a^2 = b^2 + c^2 - 2bc \cos A$ $23 - 8\sqrt{7} = 4^2 + 5^2 - 2(4)(5) \cos A$ $23 - 8\sqrt{7} = 16 + 25 - 40 \cos A$ $23 - 8\sqrt{7} = 41 - 40 \cos A$ $40 \cos A = 41 - 23 + 8\sqrt{7}$ $40 \cos A = 18 + 8\sqrt{7}$ $\cos A = (18 + 8\sqrt{7}) / 40 = (9 + 4\sqrt{7}) / 20$ $4\sqrt{7} ≈ 10.584$ $\cos A ≈ (9 + 10.584) / 20 = 19.584 / 20 = 0.9792$ (acute) So, the side length must be $a = 4 - \sqrt{7}$. With $a = 4 - \sqrt{7}$, $b=4$, $c=5$, we have: cos B = 4/5 (given) cos C = sqrt(7)/4 cos A = (9 + 4\sqrt{7}) / 20 All cosines are positive, so all angles are acute. Therefore, the value of cos C is $\sqrt{7} / 4$.
Buka akses pembahasan jawaban
Topik: Aturan Sinus Dan Cosinus
Section: Aturan Cosinus
Apakah jawaban ini membantu?