Command Palette

Search for a command to run...

Kelas 12Kelas 11mathAljabar Linear

Diketahui matriks A=[1 1 2 0 2 1 1 0 2] dan A^3=[10 9 23 5

Pertanyaan

Diketahui matriks A=[[1, 1, 2], [0, 2, 1], [1, 0, 2]] dan A^3=[[10, 9, 23], [5, 9, 14], [9, 5, 19]]. Tentukan: a. Matriks A^2. b. Tunjukkan bahwa A^3 - 5A^2 + 6A - I = O. c. Tunjukkan bahwa A(A-2I)(A-3I) = I.

Solusi

Verified

A^2=[[3, 3, 7], [1, 4, 4], [3, 1, 6]]. A^3 - 5A^2 + 6A - I = O terbukti. A(A-2I)(A-3I) = I terbukti.

Pembahasan

Diketahui matriks A=[[1, 1, 2], [0, 2, 1], [1, 0, 2]] dan A^3=[[10, 9, 23], [5, 9, 14], [9, 5, 19]]. a. Menentukan matriks A^2: A^2 = A * A = [[1, 1, 2], [0, 2, 1], [1, 0, 2]] * [[1, 1, 2], [0, 2, 1], [1, 0, 2]] = [[(1*1)+(1*0)+(2*1), (1*1)+(1*2)+(2*0), (1*2)+(1*1)+(2*2)], [(0*1)+(2*0)+(1*1), (0*1)+(2*2)+(1*0), (0*2)+(2*1)+(1*2)], [(1*1)+(0*0)+(2*1), (1*1)+(0*2)+(2*0), (1*2)+(0*1)+(2*2)]] = [[1+0+2, 1+2+0, 2+1+4], [0+0+1, 0+4+0, 0+2+2], [1+0+2, 1+0+0, 2+0+4]] = [[3, 3, 7], [1, 4, 4], [3, 1, 6]] b. Menunjukkan bahwa A^3 - 5A^2 + 6A - I = O: Kita perlu menghitung 5A^2, 6A, dan I (matriks identitas). 5A^2 = 5 * [[3, 3, 7], [1, 4, 4], [3, 1, 6]] = [[15, 15, 35], [5, 20, 20], [15, 5, 30]] 6A = 6 * [[1, 1, 2], [0, 2, 1], [1, 0, 2]] = [[6, 6, 12], [0, 12, 6], [6, 0, 12]] I = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] A^3 - 5A^2 + 6A - I = [[10, 9, 23], [5, 9, 14], [9, 5, 19]] - [[15, 15, 35], [5, 20, 20], [15, 5, 30]] + [[6, 6, 12], [0, 12, 6], [6, 0, 12]] - [[1, 0, 0], [0, 1, 0], [0, 0, 1]] = [[(10-15+6-1), (9-15+6-0), (23-35+12-0)], [(5-5+0-0), (9-20+12-1), (14-20+6-0)], [(9-15+6-0), (5-5+0-0), (19-30+12-1)]] = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] Ini menunjukkan bahwa A^3 - 5A^2 + 6A - I = O (matriks nol). c. Menunjukkan bahwa A(A-2I)(A-3I) = I: Pertama, hitung (A-2I) dan (A-3I): A-2I = [[1, 1, 2], [0, 2, 1], [1, 0, 2]] - [[2, 0, 0], [0, 2, 0], [0, 0, 2]] = [[-1, 1, 2], [0, 0, 1], [1, 0, 0]] A-3I = [[1, 1, 2], [0, 2, 1], [1, 0, 2]] - [[3, 0, 0], [0, 3, 0], [0, 0, 3]] = [[-2, 1, 2], [0, -1, 1], [1, 0, -1]] Selanjutnya, hitung (A-2I)(A-3I): (A-2I)(A-3I) = [[-1, 1, 2], [0, 0, 1], [1, 0, 0]] * [[-2, 1, 2], [0, -1, 1], [1, 0, -1]] = [[((-1)*(-2))+(1*0)+(2*1), ((-1)*1)+(1*(-1))+(2*0), ((-1)*2)+(1*1)+(2*(-1)))], [((0)*(-2))+(0*0)+(1*1), (0*1)+(0*(-1))+(1*0), (0*2)+(0*1)+(1*(-1)))], [((1)*(-2))+(0*0)+(0*1), (1*1)+(0*(-1))+(0*0), (1*2)+(0*1)+(0*(-1)))]] = [[(2+0+2), (-1-1+0), (-2+1-2)], [0+0+1, 0+0+0, 0+0-1], [-2+0+0, 1+0+0, 2+0+0]] = [[4, -2, -3], [1, 0, -1], [-2, 1, 2]] Terakhir, hitung A * [(A-2I)(A-3I)]: A * [[4, -2, -3], [1, 0, -1], [-2, 1, 2]] = [[1, 1, 2], [0, 2, 1], [1, 0, 2]] * [[4, -2, -3], [1, 0, -1], [-2, 1, 2]] = [[(1*4)+(1*1)+(2*(-2)), (1*(-2))+(1*0)+(2*1), (1*(-3))+(1*(-1))+(2*2)], [(0*4)+(2*1)+(1*(-2)), (0*(-2))+(2*0)+(1*1), (0*(-3))+(2*(-1))+(1*2)], [(1*4)+(0*1)+(2*(-2)), (1*(-2))+(0*0)+(2*1), (1*(-3))+(0*(-1))+(2*2)]] = [[(4+1-4), (-2+0+2), (-3-1+4)], [0+2-2, 0+0+1, 0-2+2], [4+0-4, -2+0+2, -3+0+4]] = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] Ini menunjukkan bahwa A(A-2I)(A-3I) = I (matriks identitas).
Topik: Matriks
Section: Sifat Matriks, Operasi Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...