Kelas 12Kelas 11mathMatematika
Diketahui matriks A=(1 -1 2 2 k 1), B=(0 3 2 1 1 -1), dan
Pertanyaan
Diketahui matriks A=(1 -1 2 2 k 1), B=(0 3 2 1 1 -1), dan (AB^T)^-1=(a b c d) dengan B^T menyatakan tranpose B. Jika det(AB^T)=-2 maka a+b+c+d=...
Solusi
Verified
-2
Pembahasan
Diketahui matriks: A = [1 -1 2] [2 k 1] B = [0 3 2] [1 1 -1] B^T (transpose dari B) adalah: B^T = [0 1] [3 1] [2 -1] Perkalian AB^T: AB^T = [1 -1 2] [0 1] [2 k 1] [3 1] [2 -1] AB^T = [(1*0 + -1*3 + 2*2) (1*1 + -1*1 + 2*-1)] [(2*0 + k*3 + 1*2) (2*1 + k*1 + 1*-1)] AB^T = [(0 - 3 + 4) (1 - 1 - 2)] [(0 + 3k + 2) (2 + k - 1)] AB^T = [1 -2] [3k+2 k+1] Diketahui (AB^T)^-1 = [a b] [c d] Kita tahu bahwa jika M = [p q] [r s] M^-1 = 1/(ps-qr) * [s -q] [-r p] Jadi, (AB^T)^-1 = 1/((1)*(k+1) - (-2)*(3k+2)) * [k+1 -(-2)] [-(3k+2) 1] (AB^T)^-1 = 1/(k+1 + 6k+4) * [k+1 2] [-3k-2 1] (AB^T)^-1 = 1/(7k+5) * [k+1 2] [-3k-2 1] (AB^T)^-1 = [(k+1)/(7k+5) 2/(7k+5)] [(-3k-2)/(7k+5) 1/(7k+5)] Dari sini kita dapatkan: a = (k+1)/(7k+5) b = 2/(7k+5) c = (-3k-2)/(7k+5) d = 1/(7k+5) Diketahui det(AB^T) = -2. Dari perhitungan AB^T, determinannya adalah (1)*(k+1) - (-2)*(3k+2) = k+1 + 6k+4 = 7k+5. Jadi, 7k+5 = -2. Ini berarti 1/(7k+5) = 1/(-2). Sekarang kita bisa mencari a+b+c+d: a + b + c + d = (k+1)/(7k+5) + 2/(7k+5) + (-3k-2)/(7k+5) + 1/(7k+5) a + b + c + d = (k+1 + 2 - 3k - 2 + 1) / (7k+5) a + b + c + d = (k - 3k + 1 + 2 - 2 + 1) / (7k+5) a + b + c + d = (-2k + 2) / (7k+5) Karena kita tahu 7k+5 = -2, maka kita substitusikan: a + b + c + d = (-2k + 2) / (-2) Untuk mencari -2k+2, kita perlu nilai k dari 7k+5 = -2: 7k = -2 - 5 7k = -7 k = -1 Maka, -2k + 2 = -2(-1) + 2 = 2 + 2 = 4. Jadi, a + b + c + d = 4 / (-2) a + b + c + d = -2
Topik: Aljabar Linear
Section: Matriks
Apakah jawaban ini membantu?