Command Palette

Search for a command to run...

Kelas 12Kelas 11mathAljabar Linear

Diketahui matriks-matriks A(3 5 -2 -3) B=(3 4 5 7) a.

Pertanyaan

Diketahui matriks-matriks A([[3, 5], [-2, -3]]) B=[[3, 4], [5, 7]]. a. Tentukanlah AB, BA, (AB)^-1, dan (BA)^-1. b. Tentukanlah A^-1, B^-1, A^-1B^-1, dan B^-1A^-1. c. Dari hasil perhitungan a) dan b) di atas, periksalah apakah (i) (AB)^-1=B^-1A^-1 (ii) (BA)^-1=A^-1B^-1.

Solusi

Verified

a. AB=[[34, 47], [-21, -29]], BA=[[1, 3], [1, 4]], (AB)^-1=[[-29, -47], [21, 34]], (BA)^-1=[[4, -3], [-1, 1]]. b. A^-1=[[-3, -5], [2, 3]], B^-1=[[7, -4], [-5, 3]], A^-1B^-1=[[4, -3], [-1, 1]], B^-1A^-1=[[-29, -47], [21, 34]]. c. Ya, kedua pernyataan terbukti benar.

Pembahasan

Diberikan matriks A = [[3, 5], [-2, -3]] dan B = [[3, 4], [5, 7]]. a. Menentukan AB, BA, (AB)^-1, dan (BA)^-1: AB = [[3, 5], [-2, -3]] * [[3, 4], [5, 7]] = [[(3*3)+(5*5), (3*4)+(5*7)], [(-2*3)+(-3*5), (-2*4)+(-3*7)]] = [[9+25, 12+35], [-6-15, -8-21]] = [[34, 47], [-21, -29]] Determinan AB (det(AB)) = (34 * -29) - (47 * -21) = -986 - (-987) = -986 + 987 = 1 (AB)^-1 = 1/det(AB) * [[-29, -47], [21, 34]] = 1/1 * [[-29, -47], [21, 34]] = [[-29, -47], [21, 34]] BA = [[3, 4], [5, 7]] * [[3, 5], [-2, -3]] = [[(3*3)+(4*-2), (3*5)+(4*-3)], [(5*3)+(7*-2), (5*5)+(7*-3)]] = [[9-8, 15-12], [15-14, 25-21]] = [[1, 3], [1, 4]] Determinan BA (det(BA)) = (1 * 4) - (3 * 1) = 4 - 3 = 1 (BA)^-1 = 1/det(BA) * [[4, -3], [-1, 1]] = 1/1 * [[4, -3], [-1, 1]] = [[4, -3], [-1, 1]] b. Menentukan A^-1, B^-1, A^-1B^-1, dan B^-1A^-1: Determinan A (det(A)) = (3 * -3) - (5 * -2) = -9 - (-10) = -9 + 10 = 1 A^-1 = 1/det(A) * [[-3, -5], [2, 3]] = 1/1 * [[-3, -5], [2, 3]] = [[-3, -5], [2, 3]] Determinan B (det(B)) = (3 * 7) - (4 * 5) = 21 - 20 = 1 B^-1 = 1/det(B) * [[7, -4], [-5, 3]] = 1/1 * [[7, -4], [-5, 3]] = [[7, -4], [-5, 3]] A^-1B^-1 = [[-3, -5], [2, 3]] * [[7, -4], [-5, 3]] = [[(-3*7)+(-5*-5), (-3*-4)+(-5*3)], [(2*7)+(3*-5), (2*-4)+(3*3)]] = [[-21+25, 12-15], [14-15, -8+9]] = [[4, -3], [-1, 1]] B^-1A^-1 = [[7, -4], [-5, 3]] * [[-3, -5], [2, 3]] = [[(7*-3)+(-4*2), (7*-5)+(-4*3)], [(-5*-3)+(3*2), (-5*-5)+(3*3)]] = [[-21-8, -35-12], [15+6, 25+9]] = [[-29, -47], [21, 34]] c. Memeriksa hubungan: (i) Apakah (AB)^-1 = B^-1A^-1? (AB)^-1 = [[-29, -47], [21, 34]] B^-1A^-1 = [[-29, -47], [21, 34]] Ya, (AB)^-1 = B^-1A^-1. (ii) Apakah (BA)^-1 = A^-1B^-1? (BA)^-1 = [[4, -3], [-1, 1]] A^-1B^-1 = [[4, -3], [-1, 1]] Ya, (BA)^-1 = A^-1B^-1. Hasil perhitungan mengkonfirmasi bahwa sifat-sifat invers matriks tersebut berlaku.

Buka akses pembahasan jawaban

Topik: Matriks
Section: Perkalian Matriks, Invers Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...