Command Palette

Search for a command to run...

Kelas 11Kelas 10mathAljabar

Diketahui parabola y=mx^2+x+4 dan garis lurus y=2x+m

Pertanyaan

Diketahui parabola y=mx^2+x+4 dan garis lurus y=2x+m berpotongan di titik A dan B. Jika titik A terletak pada sumbu Y, maka koordinat B adalah ....

Solusi

Verified

Koordinat titik B adalah (1/4, 9/2).

Pembahasan

Untuk menentukan koordinat titik B, kita perlu mencari titik potong antara parabola y = mx^2 + x + 4 dan garis y = 2x + m. Diketahui titik A terletak pada sumbu Y, yang berarti absis (nilai x) dari titik A adalah 0. Substitusikan x = 0 ke dalam persamaan garis y = 2x + m untuk mencari ordinat (nilai y) titik A: y = 2(0) + m y = m Karena titik A berada pada sumbu Y, maka koordinat titik A adalah (0, m). Titik A juga terletak pada parabola y = mx^2 + x + 4. Substitusikan koordinat A ke dalam persamaan parabola: m = m(0)^2 + 0 + 4 m = 4 Sekarang kita tahu bahwa m = 4. Substitusikan nilai m ke dalam persamaan parabola dan garis: Parabola: y = 4x^2 + x + 4 Garis: y = 2x + 4 Untuk mencari titik potong A dan B, samakan kedua persamaan tersebut: 4x^2 + x + 4 = 2x + 4 4x^2 - x = 0 x(4x - 1) = 0 Ini memberikan dua solusi untuk x: x = 0 (titik A) 4x - 1 = 0 => x = 1/4 (titik B) Sekarang, substitusikan nilai x = 1/4 ke dalam persamaan garis y = 2x + 4 untuk mencari koordinat y titik B: y = 2(1/4) + 4 y = 1/2 + 4 y = 1/2 + 8/2 y = 9/2 Jadi, koordinat titik B adalah (1/4, 9/2).

Buka akses pembahasan jawaban

Topik: Persamaan Kuadrat, Garis Lurus
Section: Titik Potong Parabola Dan Garis Lurus

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...