Command Palette

Search for a command to run...

Kelas 10mathAljabar

Garis dengan persamaan -4x + 2y - 6 = 0 berimpit dengan

Pertanyaan

Garis dengan persamaan -4x + 2y - 6 = 0 berimpit dengan garis ...

Solusi

Verified

Garis yang berimpit adalah garis yang persamaannya setara setelah disederhanakan atau dikalikan dengan konstanta non-nol.

Pembahasan

Untuk menentukan garis mana yang berimpit dengan garis -4x + 2y - 6 = 0, kita perlu mencari garis yang memiliki gradien (kemiringan) yang sama dan titik potong sumbu y yang sama, atau garis yang merupakan kelipatan dari persamaan garis yang diberikan. Persamaan garis yang diberikan adalah -4x + 2y - 6 = 0. Kita bisa menyederhanakan persamaan ini dengan membagi seluruh persamaan dengan 2: -2x + y - 3 = 0 Atau, kita bisa menuliskannya dalam bentuk y = mx + c: y = 2x + 3 Gradien (m) dari garis ini adalah 2, dan titik potong sumbu y (c) adalah 3. Sekarang, mari kita periksa setiap pilihan (yang tidak disediakan dalam input Anda) untuk menemukan garis yang berimpit. Sebuah garis akan berimpit jika persamaannya merupakan kelipatan dari persamaan -2x + y - 3 = 0. Misalnya, jika kita mengalikan seluruh persamaan dengan 2, kita mendapatkan: -4x + 2y - 6 = 0 (ini adalah persamaan asli). Jika kita mengalikan seluruh persamaan dengan -1, kita mendapatkan: 2x - y + 3 = 0. Jadi, garis yang berimpit adalah garis yang persamaannya setelah disederhanakan atau dikalikan dengan konstanta non-nol, menghasilkan bentuk yang setara dengan -2x + y - 3 = 0.
Topik: Persamaan Garis Lurus
Section: Gradien Dan Persamaan Garis

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...