Command Palette

Search for a command to run...

Kelas 12Kelas 11Kelas 10mathAljabar

Hitunglah: (27 log 125) (25 log (1/64))(64 log (1/9))

Pertanyaan

Hitunglah: (27 log 125) (25 log (1/64))(64 log (1/9))

Solusi

Verified

27/4

Pembahasan

Untuk menghitung (27 log 125) (25 log (1/64))(64 log (1/9)), kita dapat menggunakan sifat logaritma: a log b = log b / log a dan c log a = 1 / (a log c). Pertama, ubah basis dan argumen logaritma agar memiliki basis yang sama atau dapat dihubungkan: 27 log 125 = (3^3) log (5^3) = (3/3) * (3 log 5) = 3 log 5 25 log (1/64) = (5^2) log (2^-6) = (1/2) * (-6) * (5 log 2) = -3 * (5 log 2) 64 log (1/9) = (4^3) log (3^-2) = (3/(-2)) * (4 log 3) = -3/2 * (4 log 3) Sekarang, kalikan hasil: (3 log 5) * (-3 * 5 log 2) * (-3/2 * 4 log 3) Gunakan sifat logaritma lagi: a log b * b log c = a log c (3 log 5) * (-3 * 5 log 2) = -9 * (3 log 5) * (5 log 2) = -9 * (3 log 2) Kalikan dengan suku terakhir: (-9 * 3 log 2) * (-3/2 * 4 log 3) Ubah basis logaritma agar lebih mudah dihitung: 3 log 2 = log 2 / log 3 4 log 3 = log 3 / log 4 Substitusikan kembali: (-9 * (log 2 / log 3)) * (-3/2 * (log 3 / log 4)) Cancel out log 3: (-9 * log 2) * (-3/2 * 1 / log 4) Ingat bahwa log 4 = log (2^2) = 2 log 2: (-9 * log 2) * (-3/2 * 1 / (2 log 2)) Cancel out log 2: (-9) * (-3/2 * 1/2) Hitung hasil akhir: -9 * (-3/4) = 27/4 Jawaban: 27/4
Topik: Logaritma
Section: Sifat Sifat Logaritma

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...