Kelas 12Kelas 11mathKalkulus
Jika lim x->0 sinx/x =1 maka nilai dari lim x->0 (2/x^2 -
Pertanyaan
Jika $\lim_{x \to 0} \frac{\sin x}{x} = 1$, maka nilai dari $\lim_{x \to 0} \left(\frac{2}{x^2} - \frac{\sin 2x}{x^2 \tan x}\right)$ adalah
Solusi
Verified
2
Pembahasan
Untuk menyelesaikan limit $\lim_{x \to 0} \left(\frac{2}{x^2} - \frac{\sin 2x}{x^2 \tan x}\right)$, kita dapat menggunakan identitas trigonometri dan aturan L'Hopital atau ekspansi deret Taylor. Menggunakan ekspansi deret Taylor di sekitar x=0: $\sin 2x \approx 2x - \frac{(2x)^3}{3!} = 2x - \frac{8x^3}{6} = 2x - \frac{4x^3}{3}$ $\tan x \approx x + \frac{x^3}{3}$ Maka, \frac{\sin 2x}{x^2 \tan x} \approx \frac{2x - \frac{4x^3}{3}}{x^2 \left(x + \frac{x^3}{3}\right)} = \frac{2x(1 - \frac{2x^2}{3})}{x^3(1 + \frac{x^2}{3})} = \frac{2}{x^2} \frac{(1 - \frac{2x^2}{3})}{(1 + \frac{x^2}{3})} Sehingga, \frac{2}{x^2} - \frac{\sin 2x}{x^2 \tan x} \approx \frac{2}{x^2} - \frac{2}{x^2} \frac{(1 - \frac{2x^2}{3})}{(1 + \frac{x^2}{3})} = \frac{2}{x^2} \left(1 - \frac{(1 - \frac{2x^2}{3})}{(1 + \frac{x^2}{3})}\right) = \frac{2}{x^2} \left(\frac{(1 + \frac{x^2}{3}) - (1 - \frac{2x^2}{3})}{(1 + \frac{x^2}{3})}\right) = \frac{2}{x^2} \left(\frac{\frac{x^2}{3} + \frac{2x^2}{3}}{(1 + \frac{x^2}{3})}\right) = \frac{2}{x^2} \left(\frac{x^2}{(1 + \frac{x^2}{3})}\right) = \frac{2}{(1 + \frac{x^2}{3})} Ketika x -> 0, \frac{2}{(1 + \frac{x^2}{3})} -> \frac{2}{(1 + 0)} = 2. Cara lain menggunakan limit yang diberikan $\lim_{x \to 0} \frac{\sin x}{x} = 1$. Kita bisa manipulasi ekspresi: $\frac{\sin 2x}{x^2 \tan x} = \frac{\sin 2x}{2x} \cdot \frac{2x}{x^2} \cdot \frac{x}{\tan x} \cdot \frac{1}{x} = \frac{\sin 2x}{2x} \cdot 2 \cdot \frac{x}{\tan x} \cdot \frac{1}{x}$ Kita tahu $\lim_{x \to 0} \frac{\sin 2x}{2x} = 1$ dan $\lim_{x \to 0} \frac{x}{\tan x} = 1$. Maka, \frac{2}{x^2} - \frac{\sin 2x}{x^2 \tan x} = \frac{2}{x^2} - \frac{\sin 2x}{x^2 \tan x} \cdot \frac{2}{2} \cdot \frac{\tan x}{x} \cdot x = \frac{2}{x^2} - \frac{\sin 2x}{2x} \cdot \frac{2}{x \tan x} \cdot x = \frac{2}{x^2} - \frac{\sin 2x}{2x} \cdot \frac{2 \tan x}{x^2 \tan x} = \frac{2}{x^2} - \frac{\sin 2x}{2x} \frac{2 \tan x}{x^2 \tan x} Mari kita ubah ekspresinya menjadi: $\frac{2}{x^2} - \frac{\sin 2x}{x^2 \tan x} = \frac{2 \tan x - \sin 2x}{x^2 \tan x}$ Kita gunakan $\sin 2x = 2 \sin x \cos x$ dan $\tan x = \frac{\sin x}{\cos x}$: $\frac{2 \frac{\sin x}{\cos x} - 2 \sin x \cos x}{x^2 \frac{\sin x}{\cos x}} = \frac{\frac{2 \sin x - 2 \sin x \cos^2 x}{\cos x}}{\frac{x^2 \sin x}{\cos x}} = \frac{2 \sin x (1 - \cos^2 x)}{x^2 \sin x} = \frac{2 \sin x \sin^2 x}{x^2 \sin x} = \frac{2 \sin^2 x}{x^2}$ $\lim_{x \to 0} \frac{2 \sin^2 x}{x^2} = 2 \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 = 2 (1)^2 = 2$.
Topik: Limit Fungsi
Section: Limit Trigonometri
Apakah jawaban ini membantu?