Command Palette

Search for a command to run...

Kelas 11Kelas 10mathAljabar

Carilah PtLDV yang memenuhi daerah yang diarsir berikut

Pertanyaan

Carilah sistem pertidaksamaan linear dua variabel (PtLDV) yang memenuhi daerah yang diarsir pada grafik, dengan batas-batas yang melibatkan titik (0, 2) dan (-1, 0).

Solusi

Verified

Tergantung pada bentuk daerah yang diarsir. Jika dibatasi sumbu koordinat dan garis melalui (0,2) & (1,0), maka x>=0, y>=0, 2x+y<=2.

Pembahasan

Untuk menentukan sistem pertidaksamaan linear dua variabel (PtLDV) yang memenuhi daerah yang diarsir, kita perlu mengidentifikasi garis-garis batas yang membentuk daerah tersebut dan menentukan arah arsirannya. Berdasarkan gambar yang Anda deskripsikan (meskipun tidak terlihat), biasanya daerah yang diarsir dibatasi oleh sumbu x, sumbu y, dan satu atau dua garis lainnya. Asumsi umum untuk daerah yang diarsir di kuadran I yang dibatasi oleh titik-titik seperti (0, 2) dan (-1, 0) pada sumbu X dan Y mengarah pada garis yang melewati titik-titik tersebut, atau titik-titik lain yang membentuk daerah segitiga atau segi empat. Karena Anda menyebutkan titik Y(0, 2) dan (-1, 0) pada sumbu X, ini kemungkinan besar mengacu pada garis yang melewati titik (0, 2) dan titik lain pada sumbu X (misalnya, titik potong dengan sumbu X). Jika kita mengasumsikan garis tersebut melewati (0, 2) dan (-1, 0), maka: Gradien (m) = (y2 - y1) / (x2 - x1) = (0 - 2) / (-1 - 0) = -2 / -1 = 2. Persamaan garis dengan gradien 2 yang melewati titik (0, 2) (y-intercept) adalah y = mx + c, jadi y = 2x + 2. Selanjutnya, kita perlu menentukan pertidaksamaan berdasarkan arah arsirannya. Jika daerah yang diarsir berada di bawah garis y = 2x + 2 dan di kuadran pertama (x >= 0, y >= 0): Maka pertidaksamaannya adalah: 1. x >= 0 (karena berada di sebelah kanan sumbu y) 2. y >= 0 (karena berada di atas sumbu x) 3. y <= 2x + 2 (jika daerah arsir berada di bawah garis dan titik (0,0) memenuhi, maka y <= 2x+2. Cek titik (0,0): 0 <= 2*0 + 2 -> 0 <= 2, benar). Namun, jika titik (-1, 0) adalah salah satu batas dan daerahnya di kuadran pertama, mungkin ada interpretasi lain. Jika soal merujuk pada daerah segitiga yang dibatasi oleh sumbu y, sumbu x, dan garis yang melewati (0,2) serta titik lain pada sumbu x (misalnya (a,0)), maka: - Sumbu y memberikan batas x >= 0. - Sumbu x memberikan batas y >= 0. - Garis yang melewati (0,2) dan (a,0) akan memiliki persamaan y - 0 = [(2-0)/(0-a)](x - a) -> y = (-2/a)(x-a). Tanpa gambar yang jelas, sulit untuk memberikan jawaban yang pasti. Namun, jika kita mengasumsikan daerah yang dibatasi oleh sumbu koordinat dan garis yang melewati (0,2) serta titik (1,0) (bukan (-1,0) untuk daerah di kuadran I yang umum): - Garis melalui (0,2) dan (1,0). - Gradien m = (0-2)/(1-0) = -2. - Persamaan garis: y - 2 = -2(x - 0) -> y = -2x + 2 atau 2x + y = 2. - Jika daerah diarsir di bawah garis dan di kuadran pertama: x >= 0 y >= 0 2x + y <= 2 Mohon berikan gambar atau deskripsi yang lebih spesifik mengenai daerah yang diarsir untuk jawaban yang akurat.

Buka akses pembahasan jawaban

Topik: Pertidaksamaan Linear Dua Variabel
Section: Sistem Pertidaksamaan Linear

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...