Kelas 9Kelas 10mathAljabar
Diketahui (1)/(A)+(1)/(B)=(1)/(20),
Pertanyaan
Diketahui (1)/(A)+(1)/(B)=(1)/(20), (1)/(B)+(1)/(C)=(1)/(12) , dan (1)/(A)+(1)/(C)=(1)/(10) . Maka nilai A adalah ....
Solusi
Verified
A = 30
Pembahasan
Diketahui: (1)/(A) + (1)/(B) = (1)/(20) ...(1) (1)/(B) + (1)/(C) = (1)/(12) ...(2) (1)/(A) + (1)/(C) = (1)/(10) ...(3) Untuk mencari nilai A, kita bisa menjumlahkan ketiga persamaan tersebut: [(1)/(A) + (1)/(B)] + [(1)/(B) + (1)/(C)] + [(1)/(A) + (1)/(C)] = (1)/(20) + (1)/(12) + (1)/(10) 2(1)/(A) + 2(1)/(B) + 2(1)/(C) = (3 + 5 + 6)/(60) 2[(1)/(A) + (1)/(B) + (1)/(C)] = (14)/(60) 2[(1)/(A) + (1)/(B) + (1)/(C)] = (7)/(30) (1)/(A) + (1)/(B) + (1)/(C) = (7)/(60) ...(4) Sekarang, kita bisa mencari nilai (1)/(A) dengan mengurangkan persamaan (2) dari persamaan (4): [(1)/(A) + (1)/(B) + (1)/(C)] - [(1)/(B) + (1)/(C)] = (7)/(60) - (1)/(12) (1)/(A) = (7)/(60) - (5)/(60) (1)/(A) = (2)/(60) (1)/(A) = (1)/(30) Maka, nilai A adalah 30.
Buka akses pembahasan jawaban
Topik: Sistem Persamaan Linear
Section: Spl Tiga Variabel
Apakah jawaban ini membantu?