Command Palette

Search for a command to run...

Kelas 12Kelas 11mathKalkulus

Tentukan nilai dari hasil dy/dx di titik yang diberikan

Pertanyaan

Tentukan nilai dari hasil dy/dx di titik yang diberikan dari fungsi berikut. y=3 x^(1/3)+x^(2/3)+2x^(-1/3), x=8

Solusi

Verified

13/24

Pembahasan

Untuk mencari nilai dy/dx dari fungsi y = 3x^(1/3) + x^(2/3) + 2x^(-1/3) pada x = 8, kita perlu menurunkan fungsi tersebut terhadap x terlebih dahulu. dy/dx = d/dx (3x^(1/3) + x^(2/3) + 2x^(-1/3)) Menggunakan aturan pangkat (d/dx (x^n) = nx^(n-1)), kita dapatkan: dy/dx = 3 * (1/3)x^(1/3 - 1) + (2/3)x^(2/3 - 1) + 2 * (-1/3)x^(-1/3 - 1) dy/dx = x^(-2/3) + (2/3)x^(-1/3) - (2/3)x^(-4/3) Sekarang, substitusikan x = 8 ke dalam turunan: dy/dx (8) = 8^(-2/3) + (2/3)8^(-1/3) - (2/3)8^(-4/3) Ingat bahwa 8^(1/3) = 2. dy/dx (8) = (1/8^(2/3)) + (2/3)(1/8^(1/3)) - (2/3)(1/8^(4/3)) dy/dx (8) = (1/(8^(1/3))^2) + (2/3)(1/2) - (2/3)(1/(8^(1/3))^4) dy/dx (8) = (1/2^2) + 1/3 - (2/3)(1/2^4) dy/dx (8) = 1/4 + 1/3 - (2/3)(1/16) dy/dx (8) = 1/4 + 1/3 - 1/24 Untuk menjumlahkan pecahan ini, cari KPK dari 4, 3, dan 24, yaitu 24. dy/dx (8) = (6/24) + (8/24) - (1/24) dy/dx (8) = (6 + 8 - 1) / 24 dy/dx (8) = 13/24 Jadi, nilai dari dy/dx pada x = 8 adalah 13/24.

Buka akses pembahasan jawaban

Topik: Turunan
Section: Aplikasi Turunan, Aturan Turunan

Apakah jawaban ini membantu?
Tentukan nilai dari hasil dy/dx di titik yang diberikan - Saluranedukasi