Command Palette

Search for a command to run...

Kelas 12Kelas 11mathKalkulus

Diketahui f(x)=(1+sin x)/cos x maka f'(1/6pi)=....

Pertanyaan

Diketahui f(x)=(1+sin x)/cos x maka f'(1/6pi)=....

Solusi

Verified

f'(1/6pi) = 2

Pembahasan

Untuk mencari turunan f(x) = (1 + sin x) / cos x, kita gunakan aturan kuosien. Misalkan u = 1 + sin x, maka u' = cos x. Misalkan v = cos x, maka v' = -sin x. f'(x) = (u'v - uv') / v^2 f'(x) = (cos x * cos x - (1 + sin x) * (-sin x)) / (cos x)^2 f'(x) = (cos^2 x + sin x + sin^2 x) / cos^2 x f'(x) = (1 + sin x) / cos^2 x Sekarang kita substitusikan x = \pi/6: f'(pi/6) = (1 + sin(pi/6)) / cos^2(pi/6) sin(pi/6) = 1/2 cos(pi/6) = sqrt(3)/2 cos^2(pi/6) = (sqrt(3)/2)^2 = 3/4 f'(pi/6) = (1 + 1/2) / (3/4) f'(pi/6) = (3/2) / (3/4) f'(pi/6) = (3/2) * (4/3) f'(pi/6) = 2
Topik: Turunan Fungsi Trigonometri
Section: Aturan Rantai, Aturan Hasil Bagi

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...