Kelas 12Kelas 11mathMatematika
Invers matriks [1/(2(a-b)) 1/(2(a+b)) -1/(2(a-b))
Pertanyaan
Invers matriks [1/(2(a-b)) 1/(2(a+b))] [-1/(2(a-b)) 1/(2(a+b))] adalah ....
Solusi
Verified
Invers matriksnya adalah [[a-b, -(a-b)], [a+b, a+b]].
Pembahasan
Untuk mencari invers dari matriks yang diberikan, kita perlu menggunakan rumus invers matriks 2x2, yaitu: Jika M = [[a, b], [c, d]], maka M⁻¹ = 1/(ad-bc) * [[d, -b], [-c, a]]. Matriks yang diberikan adalah: M = [1/(2(a-b)) 1/(2(a+b))] [-1/(2(a-b)) 1/(2(a+b))] Misalkan: a' = 1/(2(a-b)) b' = 1/(2(a+b)) c' = -1/(2(a-b)) d' = 1/(2(a+b)) Maka, matriks tersebut adalah: M = [[a', b'], [c', d']] Pertama, kita hitung determinan matriks (ad - bc): determinan = a'd' - b'c' determinan = [1/(2(a-b))] * [1/(2(a+b))] - [1/(2(a+b))] * [-1/(2(a-b))] determinan = 1/[4(a-b)(a+b)] + 1/[4(a+b)(a-b)] determinan = 1/[4(a²-b²)] + 1/[4(a²-b²)] determinan = 2/[4(a²-b²)] determinan = 1/[2(a²-b²)] Sekarang, kita gunakan rumus invers: M⁻¹ = 1/determinan * [[d', -b'], [-c', a']] M⁻¹ = 1 / (1/[2(a²-b²)]) * [[1/(2(a+b)), -1/(2(a+b))], [1/(2(a-b)), 1/(2(a-b))]] M⁻¹ = 2(a²-b²) * [[1/(2(a+b)), -1/(2(a+b))], [1/(2(a-b)), 1/(2(a-b))]] Mengalikan setiap elemen dengan 2(a²-b²): M⁻¹ = [[2(a²-b²)/(2(a+b)), -2(a²-b²)/(2(a+b))], [2(a²-b²)/(2(a-b)), 2(a²-b²)/(2(a-b))]] M⁻¹ = [[(a-b)(a+b)/(a+b), -(a-b)(a+b)/(a+b)], [(a-b)(a+b)/(a-b), (a-b)(a+b)/(a-b)]] M⁻¹ = [[(a-b), -(a-b)], [(a+b), (a+b)]] Jadi, invers matriks tersebut adalah [[a-b, -(a-b)], [a+b, a+b]].
Buka akses pembahasan jawaban
Topik: Aljabar Linear
Section: Invers Matriks, Matriks
Apakah jawaban ini membantu?