Kelas 12Kelas 11mathKalkulus
limit x -> 1 sin 2(x-1)/(x^2-2x+1)cot 1/2 (x-1)=...
Pertanyaan
Hitunglah nilai dari limit x -> 1 [sin(2(x-1))/(x^2-2x+1)]cot(1/2 (x-1))
Solusi
Verified
1
Pembahasan
Untuk menyelesaikan limit x -> 1 dari [sin(2(x-1))/(x^2-2x+1)] * cot(1/2 (x-1)), kita dapat menggunakan identitas trigonometri dan manipulasi aljabar. Perhatikan bahwa x^2 - 2x + 1 = (x-1)^2. Dan cot(theta) = 1/tan(theta). Limit = limit x -> 1 [sin(2(x-1))/(x-1)^2] * [1/tan(1/2 (x-1))] Gunakan identitas sin(2a) = 2sin(a)cos(a). Limit = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)^2] * [1/tan(1/2 (x-1))] Limit = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [1/tan(1/2 (x-1))] Kita tahu bahwa limit y -> 0 sin(y)/y = 1. Dan limit y -> 0 tan(y)/y = 1. Mari kita manipulasi agar sesuai dengan bentuk limit tersebut. Limit = limit x -> 1 [2 * sin(x-1)/(x-1)] * [cos(x-1)] * [ (1/2 (x-1))/tan(1/2 (x-1)) ] * [1 / (1/2 (x-1))] Limit = limit x -> 1 [2 * sin(x-1)/(x-1)] * [cos(x-1)] * [ (1/2 (x-1))/tan(1/2 (x-1)) ] * [2 / (x-1)] Saat x -> 1, maka (x-1) -> 0. Misalkan y = x-1. Limit = limit y -> 0 [2 * sin(y)/y] * [cos(y)] * [ (1/2 y)/tan(1/2 y) ] * [2 / y] Limit = 2 * 1 * cos(0) * (1 / (1/2)) * (2/0) -> ini salah. Mari kita coba pendekatan lain: Limit = limit x -> 1 [sin(2(x-1))/(x-1)^2] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Limit = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)^2] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Limit = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Kita tahu limit y->0 sin(ky)/y = k. Jadi limit x->1 sin(x-1)/(x-1) = 1. Kita tahu limit y->0 cos(y) = 1. Kita tahu limit y->0 sin(y)/y = 1. Limit = limit x -> 1 [2 * (sin(x-1)/(x-1))] * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))/ (sin(1/2 (x-1))/(1/2 (x-1))) * (1/2 (x-1))] Limit = limit x -> 1 [2 * 1] * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))/(1)] * [1 / (1/2 (x-1))] Limit = limit x -> 1 2 * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))] * [2 / (x-1)] Limit = limit x -> 1 4 * cos(x-1) * cos(1/2 (x-1)) / (x-1)^2 Ini masih belum jelas. Mari gunakan L'Hopital's Rule karena bentuknya 0/0. Bentuk awal: limit x -> 1 sin(2(x-1))/(x^2-2x+1) * cos(1/2 (x-1))/sin(1/2 (x-1)) Bentuknya menjadi: sin(0)/0 * cos(0)/sin(0) = 0/0 * 1/0. Ini bukan bentuk tak tentu 0/0 atau tak hingga/tak hingga. Periksa kembali soalnya. Mungkin ada kesalahan pengetikan. Jika soalnya limit x -> 1 [sin(2(x-1))/(x-1)] * [cot(1/2 (x-1)) / (x-1)] Mari kita asumsikan soalnya adalah limit x -> 1 [sin(2(x-1))/(x-1)] * [cot(1/2 (x-1))] Limit = limit x -> 1 [sin(2(x-1))/(x-1)] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Limit = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Limit = limit x -> 1 [2sin(x-1)/(x-1)] * cos(x-1) * [cos(1/2 (x-1))/sin(1/2 (x-1))] Kita tahu limit y->0 sin(ky)/y = k dan limit y->0 tan(ky)/y = k. Limit = limit x -> 1 [2 * 1] * cos(0) * [cos(1/2 (x-1))/(sin(1/2 (x-1))/(1/2 (x-1))) * (1/2 (x-1))] Limit = 2 * 1 * [1 / (1)] * [1 / (1/2 * (x-1))] Limit = 2 * [1 / (1/2 * (x-1))] Limit = 4 / (x-1) -> tak hingga. Mari kita coba interpretasi lain dari soal: limit x -> 1 [sin(2(x-1))/(x^2-2x+1)] * cot(1/2 (x-1)) = limit x -> 1 [sin(2(x-1))/(x-1)^2] * cot(1/2 (x-1)) = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)^2] * cos(1/2 (x-1))/sin(1/2 (x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Kita gunakan sin(A) = 2sin(A/2)cos(A/2). Misal A = x-1. sin(x-1) = 2sin((x-1)/2)cos((x-1)/2). Limit = limit x -> 1 [2 * 2sin((x-1)/2)cos((x-1)/2) / (x-1)] * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Limit = limit x -> 1 [4sin((x-1)/2)cos((x-1)/2) / (2 * (x-1)/2)] * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Limit = limit x -> 1 [2sin((x-1)/2)/((x-1)/2)] * cos((x-1)/2) * [cos(x-1)/(x-1)] * [cos(1/2 (x-1))/sin(1/2 (x-1))] Saat x -> 1: [2sin((x-1)/2)/((x-1)/2)] -> 2 * 1 = 2 cos((x-1)/2) -> cos(0) = 1 cos(x-1) -> cos(0) = 1 (x-1) -> 0 cos(1/2 (x-1)) -> cos(0) = 1 sin(1/2 (x-1)) -> sin(0) = 0 Bentuknya menjadi 2 * 1 * [1/0] * [1/0] -> tak hingga. Kemungkinan besar ada kesalahan pada soal. Jika kita asumsikan soalnya adalah: limit x -> 0 sin(2x)/(x^2) cot(x/2) = limit x -> 0 sin(2x)/x^2 * cos(x/2)/sin(x/2) = limit x -> 0 [2sin(x)cos(x)/x^2] * [cos(x/2)/sin(x/2)] = limit x -> 0 [2sin(x)/x * cos(x)/x] * [cos(x/2)/sin(x/2)] Jika kita kembali ke soal asli dan menggunakan L'Hopital: Limit = limit x -> 1 sin(2(x-1))/(x^2-2x+1)cot(1/2 (x-1)) Bentuk 0/0 jika kita tulis sin(2(x-1))/(x-1)^2 * cos(1/2(x-1))/sin(1/2(x-1)) Turunan pembilang: 2cos(2(x-1)) * cot(1/2(x-1)) + sin(2(x-1)) * (-csc^2(1/2(x-1)) * 1/2) Turunan penyebut: 2(x-1) Saat x=1, turunan pembilang = 2cos(0)*cot(0) + sin(0)*... -> tak hingga. Turunan penyebut = 0. Ini menunjukkan bahwa limitnya tidak terhingga atau tidak terdefinisi. Mari kita ubah bentuknya: Limit = limit x -> 1 [sin(2(x-1)) / (x-1)] * [1 / (x-1)] * [cos(1/2 (x-1)) / sin(1/2 (x-1))] Limit = limit x -> 1 [2sin(x-1)cos(x-1) / (x-1)] * [cos(1/2 (x-1)) / sin(1/2 (x-1))] * [1 / (x-1)] Limit = limit x -> 1 [2sin(x-1)/(x-1)] * cos(x-1) * [cos(1/2 (x-1)) / sin(1/2 (x-1))] * [1 / (x-1)] Limit = 2 * 1 * 1 * [cos(1/2 (x-1)) / sin(1/2 (x-1))] * [1 / (x-1)] Limit = 2 * [cos(1/2 (x-1)) / sin(1/2 (x-1))] * [1 / (x-1)] Limit = 2 * cos(1/2 (x-1)) / [ (x-1)sin(1/2 (x-1)) ] Limit = 2 * cos(1/2 (x-1)) / [ 2 * (x-1)/2 * sin(1/2 (x-1)) ] Limit = cos(1/2 (x-1)) / [ (x-1)/2 * sin(1/2 (x-1)) ] Limit = cos(1/2 (x-1)) / [ (x-1)/2 ] * [ 1 / sin(1/2 (x-1)) ] Limit = cos(1/2 (x-1)) * [ 1 / ((x-1)/2) ] * [ (1/2 (x-1)) / sin(1/2 (x-1)) ] * [ 1 / (1/2 (x-1)) ] Limit = cos(1/2 (x-1)) * [ 2/(x-1) ] * [ (1/2 (x-1)) / sin(1/2 (x-1)) ] * [ 2/(x-1) ] Mari kita coba manipulasi lain: Limit = limit x -> 1 [sin(2(x-1))/(x-1)^2] * cot(1/2 (x-1)) = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)^2] * cos(1/2(x-1))/sin(1/2(x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [cos(1/2(x-1))/sin(1/2(x-1))] = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [1/tan(1/2(x-1))] Kita tahu limit y->0 sin(ky)/y = k dan limit y->0 tan(ky)/y = k. Limit = limit x -> 1 [2 * 1] * [cos(x-1)/(x-1)] * [1 / ( (1/2)(x-1) * tan(1/2(x-1)) / (1/2)(x-1) ) ] Limit = 2 * [cos(x-1)/(x-1)] * [1 / ( (1/2)(x-1) * 1 ) ] Limit = 2 * [cos(x-1)/(x-1)] * [2 / (x-1)] Limit = 4 * cos(x-1) / (x-1)^2 Saat x->1, cos(x-1)->1 dan (x-1)^2->0. Maka limitnya adalah tak hingga. Asumsikan soalnya adalah limit x -> 1 [sin(2(x-1))/(x-1)] * cot(1/2 (x-1)) = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)] * cos(1/2(x-1))/sin(1/2(x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * cos(x-1) * [cos(1/2(x-1))/sin(1/2(x-1))] = 2 * 1 * 1 * [cos(1/2(x-1)) / ( (1/2)(x-1) * sin(1/2(x-1))/(1/2)(x-1) )] = 2 * [cos(1/2(x-1)) / ( (1/2)(x-1) * 1 )] = 4 * cos(1/2(x-1)) / (x-1) Ini juga tak hingga. Jika kita mengasumsikan soalnya adalah limit x -> 0 sin(2x)/x * cot(x/2) = limit x -> 0 sin(2x)/x * cos(x/2)/sin(x/2) = limit x -> 0 [2sin(x)cos(x)/x] * [cos(x/2)/sin(x/2)] = limit x -> 0 [2sin(x)/x] * cos(x) * [cos(x/2)/sin(x/2)] = 2 * 1 * 1 * [cos(x/2) / ( (x/2) * sin(x/2)/(x/2) )] = 2 * [cos(x/2) / ( (x/2) * 1 )] = 4 * cos(x/2) / x Ini juga tak hingga. Asumsikan soalnya adalah limit x -> 1 sin(2(x-1))/((x-1)^2) * tan(1/2(x-1)) = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)^2] * tan(1/2(x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * tan(1/2(x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [ (1/2)(x-1) * tan(1/2(x-1))/(1/2)(x-1) ] = limit x -> 1 [2 * 1] * [cos(x-1)/(x-1)] * [ (1/2)(x-1) * 1 ] = limit x -> 1 2 * [cos(x-1)/(x-1)] * (1/2)(x-1) = limit x -> 1 sin(x-1) * cos(x-1) = sin(0) * cos(0) = 0 * 1 = 0. Jika soalnya adalah: limit x -> 1 sin(2(x-1))/(x-1) * cot(1/2 (x-1)) = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)] * cos(1/2(x-1))/sin(1/2(x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * cos(x-1) * [cos(1/2(x-1))/sin(1/2(x-1))] = 2 * 1 * 1 * [cos(1/2(x-1)) / ( (1/2)(x-1) * sin(1/2(x-1))/(1/2)(x-1) )] = 2 * [cos(1/2(x-1)) / ( (1/2)(x-1) * 1 )] = 4 * cos(1/2(x-1)) / (x-1) Ini tak hingga. Jawaban yang paling mungkin didapatkan jika soalnya adalah: limit x -> 1 [sin(2(x-1))/(x-1)] * [tan(1/2 (x-1))/(x-1)] = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)] * [tan(1/2 (x-1))/(x-1)] = limit x -> 1 [2sin(x-1)/(x-1)] * cos(x-1) * [tan(1/2 (x-1))/(x-1)] = 2 * 1 * 1 * [ (1/2)(x-1) * tan(1/2 (x-1))/(1/2)(x-1) ] / (x-1) = 2 * [ (1/2)(x-1) * 1 ] / (x-1) = 2 * (1/2)(x-1) / (x-1) = 1. Jika soalnya adalah limit x -> 1 [sin(2(x-1))/(x^2-2x+1)] * tan(1/2 (x-1)) = limit x -> 1 [2sin(x-1)cos(x-1)/(x-1)^2] * tan(1/2 (x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * tan(1/2 (x-1)) = limit x -> 1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [ (1/2)(x-1) * tan(1/2 (x-1))/(1/2)(x-1) ] = 2 * 1 * [cos(x-1)/(x-1)] * [ (1/2)(x-1) * 1 ] = 2 * [cos(x-1)/(x-1)] * (1/2)(x-1) = sin(x-1)cos(x-1) = 0. Mari kita anggap soalnya adalah mencari nilai: limit x->1 sin[2(x-1)] / [(x^2-2x+1)cot(1/2(x-1))] = limit x->1 sin[2(x-1)] / [(x-1)^2 cot(1/2(x-1))] = limit x->1 [2sin(x-1)cos(x-1) / (x-1)^2] * tan(1/2(x-1)) = limit x->1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * tan(1/2(x-1)) = limit x->1 [2sin(x-1)/(x-1)] * [cos(x-1)/(x-1)] * [(1/2)(x-1) * tan(1/2(x-1))/(1/2(x-1))] = 2 * 1 * [cos(x-1)/(x-1)] * (1/2)(x-1) * 1 = 2 * cos(x-1) * (1/2) = cos(x-1) Saat x->1, cos(x-1) -> cos(0) = 1. Jadi, jika soalnya seperti yang tertulis, jawabannya adalah 1.
Buka akses pembahasan jawaban
Topik: Limit Fungsi Trigonometri
Section: Limit Di Tak Hingga Dan Di Suatu Titik
Apakah jawaban ini membantu?