Kelas 12Kelas 11Kelas 10mathAljabar
(log(x akar(x)) - log(akar(y)) + log(x/y^2))/(log(x/y)) =
Pertanyaan
(log(x \sqrt{x}) - log(\sqrt{y}) + log(x/y^2)) / log(x/y) = ...
Solusi
Verified
5/2
Pembahasan
Mari kita sederhanakan ekspresi logaritma tersebut: Ekspresi awal: (log(x \sqrt{x}) - log(\sqrt{y}) + log(x/y^2)) / log(x/y) Gunakan sifat-sifat logaritma: 1. log(a*b) = log(a) + log(b) 2. log(a/b) = log(a) - log(b) 3. log(a^n) = n*log(a) 4. log(\sqrt{a}) = log(a^{1/2}) = (1/2)*log(a) Sederhanakan bagian pembilang: log(x \sqrt{x}) = log(x * x^{1/2}) = log(x^{3/2}) = (3/2)log(x) log(\sqrt{y}) = (1/2)log(y) log(x/y^2) = log(x) - log(y^2) = log(x) - 2log(y) Jadi, pembilang menjadi: (3/2)log(x) - (1/2)log(y) + log(x) - 2log(y) Gabungkan suku-suku yang sejenis: ((3/2) + 1)log(x) + ((-1/2) - 2)log(y) (5/2)log(x) + (-5/2)log(y) (5/2)(log(x) - log(y)) (5/2)log(x/y) Sekarang, masukkan kembali ke dalam ekspresi awal: [(5/2)log(x/y)] / log(x/y) Kita bisa membatalkan log(x/y) selama log(x/y) tidak sama dengan nol (artinya x/y ≠ 1). Hasilnya adalah 5/2. Jadi, (log(x \sqrt{x}) - log(\sqrt{y}) + log(x/y^2)) / log(x/y) = 5/2.
Topik: Logaritma
Section: Sifat Sifat Logaritma
Apakah jawaban ini membantu?