Command Palette

Search for a command to run...

Kelas 12Kelas 11mathAljabar Linear

Tentukan matriks X jika diketahui persamaan berikut. X(2 4

Pertanyaan

Tentukan matriks X jika diketahui persamaan berikut: X(2 4 1 3) + (4 -3 5 1) = (6 -5 7 3).

Solusi

Verified

X = [[4, -6], [2, -2]]

Pembahasan

Untuk menentukan matriks X dari persamaan X(2 4 1 3) + (4 -3 5 1) = (6 -5 7 3), kita perlu melakukan beberapa langkah: 1. Pindahkan matriks (4 -3 5 1) ke sisi kanan persamaan: X(2 4 1 3) = (6 -5 7 3) - (4 -3 5 1) X(2 4 1 3) = (6-4 -5-(-3) 7-5 3-1) X(2 4 1 3) = (2 -2 2 2) 2. Misalkan matriks X adalah [[a, b], [c, d]]. Maka persamaan menjadi: [[a, b], [c, d]] * [[2, 4], [1, 3]] = [[2, -2], [2, 2]] 3. Lakukan perkalian matriks di sisi kiri: [[2a+b, 4a+3b], [2c+d, 4c+3d]] = [[2, -2], [2, 2]] 4. Samakan elemen-elemen yang bersesuaian untuk mendapatkan sistem persamaan linear: Untuk baris pertama: 2a + b = 2 (Persamaan 1) 4a + 3b = -2 (Persamaan 2) Untuk baris kedua: 2c + d = 2 (Persamaan 3) 4c + 3d = 2 (Persamaan 4) 5. Selesaikan sistem persamaan untuk a dan b: Kalikan Persamaan 1 dengan 3: 6a + 3b = 6 Kurangkan Persamaan 2 dari hasil ini: (6a + 3b) - (4a + 3b) = 6 - (-2) 2a = 8 a = 4 Substitusikan a = 4 ke Persamaan 1: 2(4) + b = 2 8 + b = 2 b = -6 6. Selesaikan sistem persamaan untuk c dan d: Kalikan Persamaan 3 dengan 3: 6c + 3d = 6 Kurangkan Persamaan 4 dari hasil ini: (6c + 3d) - (4c + 3d) = 6 - 2 2c = 4 c = 2 Substitusikan c = 2 ke Persamaan 3: 2(2) + d = 2 4 + d = 2 d = -2 Jadi, matriks X adalah [[4, -6], [2, -2]].

Buka akses pembahasan jawaban

Topik: Persamaan Matriks, Operasi Matriks
Section: Perkalian Matriks, Penyelesaian Persamaan Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...