Kelas 10Kelas 11Kelas 12mathTrigonometri
Ubahlah bentuk-bentuk di bawah ini, sehingga menjadi suatu
Pertanyaan
Ubahlah bentuk $\sin a - \sin 2a$ menjadi suatu bentuk perkalian.
Solusi
Verified
$-2 \cos \frac{3a}{2} \sin \frac{a}{2}$
Pembahasan
Untuk mengubah bentuk $\sin a - \sin 2a$ menjadi bentuk perkalian, kita dapat menggunakan rumus identitas trigonometri untuk selisih sinus: $\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$. Dalam kasus ini, $A = a$ dan $B = 2a$. Maka, $\sin a - \sin 2a = 2 \cos \frac{a+2a}{2} \sin \frac{a-2a}{2} = 2 \cos \frac{3a}{2} \sin \frac{-a}{2}$. Karena $\sin(-x) = -\sin x$, maka bentuknya menjadi $-2 \cos \frac{3a}{2} \sin \frac{a}{2}$.
Buka akses pembahasan jawaban
Topik: Identitas Trigonometri
Section: Rumus Jumlah Dan Selisih Trigonometri
Apakah jawaban ini membantu?